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Abstract
Building on the work of Fyodorov (2004) and Fyodorov and Nadal (2012)
we examine the critical behaviour of population of saddles with fixed insta-
bility index k in high dimensional random energy landscapes. Such landscapes
consist of a parabolic confining potential and a random part in N � 1 dimen-
sions. When the relative strength m of the parabolic part is decreasing below
a critical value mc, the random energy landscapes exhibit a glass-like transi-
tion from a simple phase with very few critical points to a complex phase with
the energy surface having exponentially many critical points. We obtain the
annealed probability distribution of the instability index k by working out the
mean size of the population of saddles with index k relative to the mean size
of the entire population of critical points and observe toppling of stability hier-
archy which accompanies the underlying glass-like transition. In the transition
region m = mc + δN−1/2 the typical instability index scales as k = κN1/4 and
the toppling mechanism affects whole instability index distribution, in particu-
lar the most probable value ofκ changes fromκ = 0 in the simple phase (δ > 0)
to a non-zero valueκmax ∝ (−δ)3/2 in the complex phase (δ < 0). We also show
that a similar phenomenon is observed in random landscapes with an additional
fixed energy constraint and in the p-spin spherical model.
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1. Introduction

Low-dimensional random fields for a long time held a prominent role in sciences as many nat-
ural phenomena are described through statistics of random fields defined on either space or
space-time [1] with typical dimensionalities N = 2, 3 or 4. On the other hand, only recently
high-dimensional spaces (N � 1) received attention with the advent of machine learning [2]
or in studies of complex systems like spin glasses and large bio-molecules [3]. In such appli-
cations, the dimensionality N is identified with the number of degrees of freedom and the field
itself is interpreted as either energy function (spin glasses, proteins) or loss function (machine
learning). As was pointed out and utilized numerous times [4–6], the task is always to find a
configuration of the system such that the energy (or loss) function is minimized.

Although this task is straightforward in low dimensions, its successful completion for
non-convex surfaces in high-dimensional spaces is notoriously intractable and is a NP-hard
problem. As a result, heuristic methods, e.g., algorithms which work approximately but whose
robustness remain elusive, are widespread and remain the main choice of tool for practition-
ers. A well-known example is the stochastic gradient descent (SGD) algorithm derived from a
gradient descent method for solving convex problems.

Almost all problems with minimizing non-convex functions are ultimately related to the
structure of their surface which varies just as the Earth’s landscape does with plateaus, valleys
and peaks only with a greater degree of variability. On top of that, the landscape described
is very high-dimensional and thus heavily impeding our intuition. Despite these difficulties,
insights into behaviour of energy/loss landscapes are crucial in understanding of the success of
algorithms like SGD. In this context, the most natural approach is to study quantities related to
stationary points of the function by either counting their total number or study their respective
positions.

In recent years, perhaps the most startling case of a successful approach to non-convex
optimization is that of deep neural networks (DNNs). Not only the success of training DNNs
through SGD is surprising, also such models do not suffer from overfitting despite being
extremely overparametrized, generalize well to unseen examples and do not get stuck in local
minima [7]. One possible explanation of these features [6] is provided by inspecting statistics
of stationary points of the DNN loss function based on an explicit link to spherical spin glass
models. This approach along with related works [8, 9] offers a possible explanation of train-
ability aspects of DNNs through analyzing structure of stationary points. Our work extends this
line of inquiry through a probabilistic approach to the description of populations of stationary
points having a fixed instability index.

The aim of our work is to offer a detailed analysis of the stationary points in the energy land-
scapes of systems undergoing glass-like transition. The existing body of work on this subject
mostly focuses on parameter ranges far from the critical threshold, both in the topologically
non-trivial phase (where stationary points are exponentially abundant) and in the topologically
trivial phase (where, typically, there are very few stationary points) [10–13]. To the best of our
knowledge, the only work providing insights into what happens near the critical threshold is
one by Fyodorov and Nadal [14] who counted minima. We complement this study by tracking
the relative sizes of populations of minima, maxima as well as saddle points with any given
instability index k (number of unstable directions) near the critical threshold. To this end, we
work out fractional probabilities pk for a stationary point to have a given instability index k,
an approach introduced in [15]. These probabilities are quotients of the population size of the
stationary points with index k to the total number of the stationary points. The picture that is
emerging from our analysis offers an alternative explanation of the glass-like transition based
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on toppling of stability hierarchy of populations of stationary points. In this context, the stabil-
ity hierarchy refers to a steady decrease of pk when the instability index k is increasing, so that
local minima are the most likely stationary points, while toppling refers to a sudden change
when the most likely stationary points are those with a fixed number of unstable directions
kmax > 0. As we show in the current work, this phenomenon which marks a global change
in the underlying random landscape is shared by random landscapes, its energy constrained
variant and by the paradigmatic spherical p-spin model.

2. Main results

In order to gain insights into statistics of stationary points in the transition region, we employ
the paradigmatic model [10, 16] of random energy landscape where a random scalar field is
coupled to a parabolic confining potential with the transition driven by the coupling strength
μ > 0:

E(x) =
μ

2
|x|2 + V(x). (1)

Here x is a vector in N-dimensional state-space and V(x) is isotropic homogeneous Gaussian
vector field with zero mean value and covariance function

〈V(x)V(x′)〉 = N f

(
|x − x′|2

2N

)
. (2)

The main feature of model (1) is the existence of two distinct phases in the thermody-
namic limit N →∞ with a sharp transition region between the two phases at μc =

√
f ′′(0)

[10]. Introducing the rescaled coupling strength

m =
μ√
f ′′(0)

, (3)

for large values of m the system is in a topologically trivial phase whereby the parabolic con-
fining potential dominates the energy landscape (the probability of finding more than one
stationary point is zero in the limit N →∞). As m decreases below the critical threshold mc = 1
the energy landscape becomes highly complex which manifests itself in an exponential explo-
sion of stationary points—the (average) total number of stationary points and the number of
local minima grow exponentially as the dimension of the state space N increases. This transi-
tion is frequently called glass-like as it is closely related to one found in spherical spin-glasses
[17].

In a natural way, the energy landscape (1) gives rise to a gradient flow which is defined by
the differential equation

ẋ = −∇E(x). (4)

Then the stationary points x∗ of E(x), i.e., the points where ∇E vanishes, are the equilibria
(fixed points) of the gradient flow (4). In this picture, if x∗ is a point of local minimum of E(x)
(i.e., all eigenvalues of the Hessian (∂i∂ jE(x))i j at x = x∗ are positive) then the equilibrium x∗
is asymptotically stable. That is, a small displacement from x∗ in any direction results in the
system asymptotically returning back to x∗. If x∗ is a saddle and k is the number of negative
eigenvalues of the Hessian of E(x) at x = x∗ then the equilibrium at x∗ will have N − k stable
directions. Displacement along these directions will result in the system asymptotically return-
ing back. In this way, the index k is a measure of instability of the equilibrium, and we shall
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call it the instability index. The higher the value of k is, the fewer stable directions there will
be at the equilibrium. Obviously, local maxima, i.e., stationary points where k = N, are most
unstable.

2.1. Populations of stationary points

In this work, we go beyond counting few sub-populations (like minima) of stationary points in
absolute terms and instead work out relative or fractional probability distributions of stationary
points with fixed instability index. This approach enables novel, refined questions like:

• Given a randomly sampled stationary point, what would be its most likely instability
index? How does a full probability distribution of indices look like?

• How does the probability distribution of indices change in the vicinity of transition region?

Such pertinent enquiries can be made by a local agent (like an SGD algorithm or glassy sys-
tem looking for a configuration minimizing its energy) probing the landscape and encountering
saddles on its way. For example, it was argued in reference [18] that the abundance of saddles
with a large number of stable directions leads to slowing down the gradient descent dynamics
in high dimensional energy landscapes due to the dominance of borders in high dimensions:
at low temperatures the system is trapped for long times near borders (ridges) of basins of
attraction of local minima and the gradient descent is determined mainly by nearby saddles.

In what follows, we utilize three interrelated counting statistics:

• Nk, the number of stationary points with instability index k;
• Neq =

∑N
k=0Nk, the total number of stationary points;

• N (k) =
∑k

n=0Nn the number of stationary points with instability index up to k.

The quotient of the first two counting statistics is the relative frequency Nk/Neq of saddles
with instability index k, while the last one is the associated cumulative frequency distribution
N (k)/Neq. If x∗ is a stationary point of E(x) drawn at random from the entire population of
stationary points then, as was shown in [15], the probability for x∗ to have k unstable directions
is given by the average of Nk/Neq over the realizations of the random field V(x):

Pr{x∗ has instability index k} = 〈Nk/Neq〉. (5)

Therefore, 〈Nk/Neq〉 and
〈
N (k)/Neq

〉
are, respectively, the probability density function (pdf)

and cumulative distribution function of the instability index k.
In the context of the above two questions, calculating both averages is a natural starting

point. This seems a prohibitively difficult task, and, instead, we set out to analyse the annealed
probabilities

pk =
〈Nk〉
〈Neq〉

, Pk =
〈N (k)〉
〈Neq〉

, (6)

where enumerator and denominator are averaged separately and combined afterwards. To jus-
tify a connection between the right-hand side in (5) and its annealed counterpart pk, counting
statistics in both enumerator and denominator ought to have a self-averaging property in the
limit of high dimensionality limit. The recent works [19–21] addressed this type of question for
the pure p-spin spherical model whose energy landscape falls in the same class as the random
energy model and gave an affirmative answer for equilibria with sufficiently low energy or with
finite instability index k. This gives rise to a hope that for some classes of coupling fields the
annealed picture will resemble the quenched one. While the task of identifying such classes of
coupling fields is a challenging open problem which deserves further investigations, we think
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that the annealed probabilities deserve a closer look. The picture which is emerging from our
analysis of these probabilities exhibits some interesting features and is described below.

2.2. Toppling of stability hierarchy

As was mentioned above, one manifestation of the phase transition in the random energy model
(1) and (2) is the exponential explosion in the number of stationary points. In the limit of high
dimensionality N →∞, the complexity exponents

Σeq = lim
N→∞

1
N

ln 〈Neq〉 and Σ0 = lim
N→∞

1
N

log〈N0〉 (7)

associated, respectively, with the total number of stationary points and the number of local
minima, are positive for every m < 1,

Σeq =
m2 − 1

2
− ln m, Σ0 = Σeq − (1 − m)2 , (0 < m < 1) (8)

and vanish for every m > 1 [10, 14]. However, as can be seen from (8) at the critical threshold
these two counting statistics develop the exponential growth on different scales: the width
of the transition region for 〈Neq〉 is N−1/2, while the width of the transition region for 〈N0〉
is N−1/3. When one analyzes the relative sizes of populations of stationary points near the
critical threshold, such as the annealed probabilities pk and Pk (6), the microscopic scales get
superimposed. This suggests that the glassy transition in model (1) and (2) has several distinct
transition regions which we will now describe.

It is convenient to encode the scaling regimes by the formula

m = 1 +
δ

Nβ
.

The parameter values β = 1/2 and β = 1/3 define the two aforementioned microscopic scales
and the parameter value β = 0 defines a global scale. Based on these three natural scales, we
can identify four distinct scaling regions of change consisting of two microscopic and two
macroscopic scales, see figure 1 and table 1:

(a) Simplicity region, m = 1 + δ > 0
In this region the parabolic confining potential dominates in the limit N →∞. The insta-

bility index k is a discrete variable and k = 0 corresponds to a minima. With probability
asymptotically close to 1 the system has only one stationary point which is a local minimum,
and so pk = 1 in the limit N →∞ if k = 0 and pk = 0 otherwise. This is illustrated in plot (a),
figure 1.

(b) Hierarchy region, m = 1 + δ/N1/3, δ > 0
As the value of m is decreasing and getting closer to the critical threshold mc = 1, the sys-

tem exits the simplicity region and enters a hierarchy region. In this region the mean number of
saddles 〈Neq〉 is increasing as m gets closer to mc (but staying finite in the limit of high dimen-
sionality) and the deviations of the instability index k from zero become larger. This results in
a flow of indices away from k = 0 and the emergence of groups of increasingly more unsta-
ble saddles as evidenced by non-zero values of 〈Nk〉 for k > 0, see table 1. Consequently, the
annealed probability distribution of the instability index k develops a non-zero tail extending
to finite values of k and displaying the hierarchy of stability p0 > p1 > p2 > · · · with the most
likely stationary point being a local minimum. This is illustrated in plot (b), figure 1. Note that
typical values of the instability index k do not scale with N in the limit of high dimensionality,
i.e. k takes finite values k = 0, 1, 2, . . . .

5



J. Phys. A: Math. Theor. 55 (2022) 154001 J Grela and B A Khoruzhenko

Figure 1. Diagram illustrating the toppling mechanism in the random energy landscape
model (1) and (2) in the limit of high dimensionality N � 1. The diagram on the left-
hand side depicts the four scaling regions of parameter m (3). The vertical array of five
plots on the right-hand side depicts the annealed distribution of the instability index
k in each of these regions (there are two plots for the toppling region). The plot at
the top depicts the annealed probabilities pk (6) in the simplicity region and the plot
below it depicts pk in the hierarchy region. In these two regions the typical values of
k are finite and, correspondingly, the plots are discrete. In the toppling and complex-
ity regions the typical values of k scale with, correspondingly, N1/4 and N. There, the
annealed distribution of k is best described via the cumulative probability Pk =

∑k
n=0 pn.

The corresponding densities, p(c)(κ) = d
dκP

κN1/4 and p(d)(κ) = d
dκPκN , are depicted in

the bottom three plots. In the toppling region the annealed density p(c) (κ) undergoes
a gradual change when the value of m decreases below the critical threshold mc = 1
from being a monotone decreasing function of κ (the likeliest saddles are local minima)
to being a unimodal function (the likeliest saddles have κmaxN1/4 unstable directions,
κmax = 4

√
2

3π (−δ)3/2). The plots were produced using analytic expressions presented in
the third column in table 1 and evaluated at parameter values m > 1 in plot (a), δ = 0.8
in plot (b), δ = 0.2 and δ = −0.8 in plot (c), and m = 0.6 (solid line) and m = 0 (dashed
line) in plot (d). Plot (b) was produced with the help of numerical package [22].

(c) Toppling region, m = 1 + δ/N1/2, δ ∈ R

As the value of m is decreasing further and getting closer to the critical threshold, the
flow of indices away from zero becomes stronger and their distribution flatter, i.e., the dif-
ference between pk and pk+1 is becoming smaller and smaller. This microscopic mechanism
is fundamental and eventually leads to a macroscopic change which occurs in the region
m = 1 + δ/N1/2. It can be shown that in this region the total number of stationary points scales
as N1/4 and so do the typical values of the instability index k. It is then natural to introduce
rescaled instability indexκ = k/N1/4 which becomes a continuous random variable in the limit
of high dimensionality. It is instructive to inspect the dependence of the rescaled index den-
sity d

dκPκN1/4 on parameter δ, see figure 1 and table 1. For every fixed δ > 0, this density is
monotonically decreasing function of κ in the interval 0 � κ < ∞ and, hence, the hierarchy
developed in region (b) persists. The critical threshold mc = 1 which corresponds to δ = 0
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Table 1. Annealed cumulative distribution Pk = 〈N (k)〉/〈Neq〉 of the instability index
k in the random energy landscape model (1) and (2) in the limit of high dimensional-
ity N � 1. Here, ρedge(λ) =

(
Ai′(λ)

)2 − λ(Ai(λ))2 + 1
2 Ai(λ)

(
1 −

∫∞
λ Ai(t)dt

)
with Ai

denoting the Airy function, and ρsc(λ) = 2
π

√
1 − λ2 are the eigenvalue densities at the

edge and in the bulk of the eigenvalue distribution in the GOE, and Fn(λ) is the cdf of the
top (n + 1)st eigenvalue in the GOE. The complexity exponent Σeq is given in (8) and

c =
(

3π/(4
√

2)
)2/3

. The probability densities shown in the third column are plotted in
figure 1.

Coupling
strength m

Cumulative
distribution Pk

Density of
distribution

Total number of
saddles 〈Neq〉

m > 1
∑k

n=0 pn pn = δn,0 1

m = 1 + δ
3√N

, δ > 0
∑k

n=0 pn pn =
∫∞
−∞eδλ dFn(λ)∫∞

−∞eδλρedge(λ)dλ
2 e−

δ3
3
∫∞
−∞eδλρedge(λ)dλ

m = 1 + δ√
N

, δ ∈ R
∫ k

4√N
0 p(x)dx p(x) = c e

−
(
δ+cx2/3

)2

∫+∞
0 e

−
(
δ+cx2/3

)2
dx

2N1/4 eδ
2∫ +∞

0 e
−
(
δ+cx2/3

)2

dx

0 < m < 1
∫ k/N

0 p(x)dx p(x)=δ
(

x−
∫ 1

mρsc(λ)dλ
) √

4πNρsc(m)eNΣeq(m)

on this microscopic scale is the tipping point. For every fixed δ < 0, the index density is a
unimodal function of κ attaining its maximum value at κmax = 4

√
2

3π (−δ)3/2. The loss of mono-
tonicity means that the most likely stationary point is no longer a local minimum but instead a
saddle with κmaxN1/4 unstable directions. In other words, the hierarchy of stationary point pop-
ulations is broken and transition to complex phase starts which eventually produces a typical
(i.e. most probable) stationary point with non-zero instability index.

(d) Complexity region, 0 < m < 1
As the scaled coupling strength m is decreasing further below the critical threshold, the

system enters the topologically non-trivial phase where the total number of stationary points is
exponential in N, see (8). In this region, the typical values of k scale with N and thus k = κN.
The resulting index density d

dκPκN has a highly localized peak at

κmax(m)=
∫ 1

m
ρsc(λ)dλ , ρsc(λ) =

2
π

√
1 − λ2

=
1
π

(
arccos m − m

√
1 − m2

)
see plot (d), figure 1. As one would expect κmax (1) = 0 and κmax (0) = 1/2, so that when
the parabolic confining potential is turned off completely, the most likely instability index is
N/2. This of course makes complete sense as for a pure random field the stable and unstable
directions are equally likely.

Closed form expressions for the fractional probabilities (6) in the limit of high dimension-
ality N →∞ are written down explicitly in table 1 while all the derivations can be found in
appendix A.

2.3. Universality of the toppling mechanism

Although in this work we describe the glass-like transition via the toppling of stability hierarchy
for the toy model (1), we believe this mechanism holds more generally. To support this claim,
in appendix B we report on an analogous mechanisms driving the phase transition in the model
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(1) with an additional fixed energy constraint [12] and in and appendix C we do the same for
the p-spin spherical model [8, 13, 23, 24]. Below we provide a brief summary of our findings.

First, consider the same random energy landscape model (1) and (2) as before but now at a
fixed energy level E0,

E(x) = E0. (9)

We shall call this model the fixed energy model or the constrained random landscape model.
It has two parameters. One is the coupling strength μ and the other one is the energy level E0.
Similarly to the unconstrained model, one can investigate the complexity exponentΣeq associ-
ated with the total number of stationary points neq at energy level E0, Σeq = limN→∞

1
N ln〈neq〉,

and, more generally, the relative (to the total number) average sizes of the population of saddles
at energy level E0 with instability index k. The latter is described by the annealed cumulative
distribution function Pk = 〈n(k)〉/〈neq〉 of the instability index k, where n(k) is the number of
stationary points at energy level E0 with instability index up to k.

Instead of extensive parametersμ and E0 it is more convenient to use their intensive versions,
the rescaled coupling strength m (3) and the rescaled energy level

ε0 =
E0

N
√

f (0)
. (10)

The complexity exponent Σeq can be obtained in a closed form. Referring the reader to
appendix B for details, here we focus on the macroscopic phase diagram which emerges from
this calculation, see the left plot in figure 2. The macroscopic phase space is defined by the
zero level line of the complexity exponent Σeq in the (m, ε0)-plane. This line consists of two
curves (defined in (B.8))

ε0 = ε±(m), 0 � m � 1, (11)

and a straight line

ε0 = − 1
2q

, m � 1, (12)

where

q = −
√

f ′′(0) f (0)
f ′(0)

> 0.

All three elements intersect at a point (m, ε0)∗,max = (1,− 1
2q ). The complexity region in the

fixed energy model is the area in the (m, ε0)-plane which is bounded by the straight line m = 0
and the two curves (11). For all parameter values inside this region the complexity exponent
Σeq is positive and the random energy landscape (1) and (2) has, on average, exponentially
many stationary points at energy levels in the interval ε−(m) < ε0 < ε+(m). With the excep-
tion of the straight line (12), the complexity exponent Σeq is negative outside the complexity
region. This is the two-dimensional simplicity region. For all parameter values (m, ε0) in this
region the probability for the random energy landscape to have at least one stationary point is
exponentially small unless ε0 = − 1

2q in which case the landscape typically has one stationary
point (minimum) at each m > 1.

The glass-like transition from the simplicity to complexity phases happens at the critical
point (m, ε0)∗,max. In what follows we focus only on the toppling region, depicted in the right

8
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Figure 2. Phase space in the fixed energy model (1) and (2). The macroscopic phase
diagram in the (m, ε0)-plane is depicted in the plot on the left. The point (m, ε0)∗,max =
(1,− 1

2q ), represented by the grey square on the plot, is the critical point. The criss-
crossed region to the left of this point which is bounded by the lines (11) is the complexity
region. The grey dot marks the threshold energy (ε0)th = ε−(0) = − 1+2q2

2q below which
the random energy landscape has no stationary points for any m > 0. The macroscopic
toppling region around the critical point, defined in (13), is depicted in the plot on the
right. The dotted line is the boundary line along which toppling of the hierarchy of
stability happens, see items (a)–(d) above and figure 1.

plot in figure 2, which is an area of linear size O( 1√
N

) around this point:

m = 1 +
δ√
N

, ε0 = − 1
2q

+
ε√
N

, δ, ε = O(1). (13)

The toppling mechanism manifests itself in the form of annealed cumulative distribution of
instability index:

Pk(δ, ε) ∼
∫ k

4√N
0 e−

(
Δq(δ,ε)+cq x2/ 3

)2

dx∫ +∞
0 e−

(
Δq(δ,ε)+cq x2/ 3

)2

dx
, (14)

where cq =
√

2q2+3
2q2−1

(
3π

4
√

2

)2/3
is a constant and

Δq(δ, ε) =
2
√

2q2√
(2q2 − 1)(q2 + 2)

(
δ − ε

q

)
.

The behaviour of function (14) is driven by the sign of Δq(δ, ε) so the condition Δq(δ, ε) = 0
describes a boundary line along which toppling takes place (the dotted line in right plot of
figure 2). In the (δ, ε)-plane the transition from the simplicity to the complexity regions will
occur along any path that starts to the right of the boundary line ε = qδ in the region δ � 1,

9
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Figure 3. Diagram illustrating toppling mechanism in the p-spin spherical model (15)
and (16) in the limit of high dimensionality N � 1. The diagram on the left-hand side
depicts the four scaling regions of parameter B (17). The vertical array of five plots on
the right-hand side depicts the annealed distribution of the instability index k in each of
these regions (there are two plots for the toppling region). The top two plots depicts the
annealed probabilities pk (6) in the simplicity and hierarchy regions where the typical
values of k are finite. In the toppling and complexity regions the typical values of k scale
with N. There, the annealed distribution of k is best described via the cumulative proba-
bility Pk =

∑n
n=0 pn. The corresponding density p(κ) = d

dκPκN is depicted in the bottom
three plots. In the toppling region p(κ) undergoes a gradual change when the parameter
B increases above the critical threshold B = 0 from being a monotone decreasing func-
tion on the interval [0, 1/2] (the likeliest saddles are local minima and maxima) to being
a monotone increasing function (the likeliest saddles have N/2 unstable directions). The
plots were produced using analytic expressions presented in the third column in table 2
and evaluated at specific parameter values (B = −1 in (a), β = −0.8 in (b), β = 6 in (c)
and β = −4 in (d) and B = p−2

p in (d)). Plot (b) was produced with the help of numerical
package [22].

enters the cone bounded by two straight lines

ε′±(δ) = δ

(
− 3

2q
±
√

3 + 2q2

q

)
, δ � 0,

and then continues inside this cone to the region of δ � −1. When we take into account
only such meaningful paths, we recreate the toppling mechanism in two-dimensional phase
space. In particular, the system develops the most probable non-zero instability index κ′

max =(
−Δq(δ,ε)

2cq

)3/2
on crossing the line ε = qδ (dotted line in the right plot in figure 2) while the

main features of the annealed probability density of the instability index mirrors that of the
unconstrained model presented in figure 1. Furthermore, connection with the unconstrained
model is evident as the annealed probability density in the toppling region in this model have
the same functional form as (14) (compare with the relevant entries of table 1).

10
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Table 2. Annealed distribution Pk = 〈N (k)〉/〈Neq〉 of the instability index k in the spher-
ical spin-glass model (15) and (16) in the limit of high dimensionality N � 1. The first
two scaling regimes are expanded for two different parameter ranges of k due to topo-
logical constraint linking stability and instability in the spherical model. ρedge(λ), ρsc(λ)
and Fn(λ) are as defined in table 1 and Qx is the quantile function of the semicircular
law,

∫ 1
Qx
ρsc(λ)dλ = x. The mean total number of saddles 〈Neq〉 in all four regimes was

obtained in reference [13].

B = J2(p−2)−σ2

J2 p+σ2

Cumulative
distribution Pk Density of distribution

Total number of
saddles 〈Neq〉

−1 < B < 0 Pk =
∑k

n=0 pn pn = pN−n = 1
2 δn,0 2

B = − β
3√N

, β > 0 Pk =
∑k

n=0 pn pn = pN−n = 1
2

∫∞
−∞eβλ dFn(λ)∫∞

−∞eβλρedge(λ)dλ
4 e−

β3
3
∫∞
−∞e

βλρedge(λ)dλ

B = − β
N , β ∈ R

∫ k/N
0 p(x)dx p(x) = e βQ2

x∫ 1
−1e βλ2

ρsc(λ)dλ
2N e−β

∫ 1
−1e

βλ2
ρsc(λ)dλ

0 < B � p−2
p

∫ k/N
0 p(x)dx p(x) = δ

(
x − 1

2

)
4
√

N
√

1+B
πB e

N
2 log1+B

1−B

Now, consider the p-spin spherical model defined by an energy function

E◦(x) =
N+1∑

i1,...,ip=1

Ji1,i2,...,ip xi1 xi2 . . . xip +

N+1∑
i=1

hixi, (15)

where x is an N + 1 dimensional vector constrained to lie on the sphere
∑N+1

i=1 x2
i = N and

p � 2 is a positive integer. Symmetric coupling matrix J and random external field hi are both
drawn from Gaussian distributions with vanishing means and variances

〈(Ji1i2...ip)2〉 = J2

pNp−1
, 〈h2

i 〉 = σ2. (16)

In appendix C we both recall known results and summarize new calculations enabling cal-
culation of asymptotic forms of annealed probabilities across regions (a)–(d), see table 2 for a
summary. In figure 3 we plot these probabilities in all four regions as a function of an effective
variable

B =
J2(p− 2) − σ2

J2 p+ σ2
(17)

combining variances J, σ and the parameter p. Importantly, although at first the resulting picture
might not resemble figure 1 plotted for the toy model (1), it is due to development of a dual
hierarchy resulting in likewise toppling of both hierarchies simultaneously.

In contrast to the toppling mechanism of model (1) where around a single minimum in the
simple region one hierarchy is developed, in the spherical model, by topological reasons, the
simple phase consists instead of two stationary points—a minimum and a maximum. These
in turn produce two disjoint stability hierarchies and eventually, in the toppling region both
hierarchies are toppled and merged together to create a joint density centred around scaled
instability index κ = 1/2. Complexity region is trivial and centred around κ = 1/2 so the
toppling mechanism happens on a smaller scale.

11
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3. Methods

This section provides an outline of the approach we employ to calculate the fractional proba-
bilities (6) in the limit of high dimensions. Technical details of our calculations can be found in
appendices. For simplicity, we only discuss the unconstrained random energy landscape model
(1) and (2). Our approach to the other two models, the fixed energy landscape model and the
p-spin spherical model is similar and we only provide references to key results relevant to these
two models.

The key observation that enables calculation of the fractional probabilities (6) in the limit
of high dimensionality is a relation between the mean number 〈Nk〉 of stationary points with
instability index k = 0, 1, 2, . . . and the probability distribution of the top (k + 1)st eigenvalue
in the Gaussian orthogonal ensemble of random matrices. For random energy landscapes (1)
and (2) in N-dimensions this relation reads

〈Nk〉=
√

2
π

(
2
N

)N/2

Γ

(
N + 1

2

) √
N

mN

∫ ∞

−∞
e
−N

[(
s− m√

2

)2
− s2

2

]
ρ(k+1)

N+1

(√
Ns
)

ds, (18)

where ρ(k+1)
N+1 (λ) is the pdf of the top (k + 1)st eigenvalue in GOEN+1, the Gaussian orthogonal

ensemble of matrices of size (N + 1) × (N + 1), and m is the rescaled coupling strength (3).
To the best of our knowledge, relation (18) has not been stated in the literature apart from the
case of local minima (k = 0) [14]. We derive this relation in appendix A. Analogous formulae
for the fixed energy and the p-spin spherical models expressing the mean number of stationary
points with instability index k in terms ρ(k+1)

N+1 (λ) are given in equations (B.3) and (C.1).
The successful computation of 〈Nk〉 in the limit of high dimensionality and that of the

mean total number of stationary points 〈Neq〉 =
∑N

k=0 〈Nk〉 relies on effective approximations
of the eigenvalue densities ρ(k+1)

N+1 (λ) and ρN+1(λ) =
∑N

k=0ρ
(k+1)
N+1 (λ) applicable, depending on

the values of m, either in the bulk, at the spectral edge, or beyond the spectral edge in the large
deviations region. Note that ρN+1(λ) is the usual mean eigenvalue density: for an infinitesimal
δλ, the probability to find an eigenvalue of the GOEN+1 matrix in the interval (λ,λ+ δλ) is
given by ρN+1(λ)δλ.

Asymptotic analysis in the simplicity region can be performed by making use of the large
deviation rate function for ρN+1(λ), see [10, 14]. In this region, asymptotically 〈N0〉 = 〈Neq〉
and no approximation of the partial eigenvalue density ρ(k+1)

N+1 (λ) is needed.
Asymptotic analysis in the hierarchy region can be performed by making use of the

Tracy–Widom approximation for eigenvalues at the spectral edge:

ρ(k+1)
N+1

(√
2N + 2−1/2N−1/6σ

)
�

√
2N1/6F′

k(σ), (19)

where Fk(σ) is the limiting cumulative distribution function of the appropriately scaled top
(k + 1)st eigenvalue in GOEN in the limit N →∞ [25, 26].

Asymptotic analysis in the toppling and complexity regions can be performed by making
use of the Gaussian approximation for eigenvalues at the spectral edge and in the bulk [27, 28].
If k = O(Nγ) with γ ∈ (0, 1) (spectral edge) then

ρ(k+1)
N+1 (

√
Ns) � 1√

2πσ2
k

exp

[
−
(√

Ns − μk

)2

2σ2
k

]
, (20)

12
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where μk =
√

2N

[
1 −

(
3πk

4
√

2N

)2/3
]

and σ2
k = 2 log k

N1/3(12πk)2/3 . And if k = O(N ) (bulk) then (20)

holds with the mean value μk = qk and variance σ2
k = log N

2N(1−q2
k )

expressed in terms of the kth

quantile qk of the Wigner’s semicircle law.
The utility of approximations (19) and (20) is in that they allow for an asymptotic evalua-

tion of the integral on the right-hand side in (18). In this way one obtains the basic building
blocks which in turn comprise distinct fractional probabilities for each scaling regime in the
random energy landscape model. For details we refer the reader to appendix A. Using a similar
approach, the fractional probabilities are obtained for the fixed energy model in appendix B
and for the p-spin spherical model in appendix C.

4. Conclusions

In this work we propose a detailed picture of the glass-like transition in the random energy
landscape model described through the lens of populations of stationary points. To this end,
we work out fractional probabilities of populations of stationary points with fixed number
of unstable directions. These fractional probabilities can also be thought of as representing
the annealed probability distribution of the instability index of a stationary point picked up
at random from the totality of all stationary points. The behaviour of fractional probabilities
changes as the system transits from the simple phase with typically very few stationary points
to the complex phase with a multitude of stationary points. When exiting the simple phase, the
system develops a hierarchy of stability defined as monotonic behaviour of fractional proba-
bilities—the most probable stationary points are local minima, then stationary points with one
unstable direction, and so on. This order of stationary points breaks down as the system enters
the complex phase, the process that we refer to as the toppling of stability hierarchy. In the
vicinity of the transition, we identify toppling as breaking the monotonicity of fractional prob-
abilities of populations or, equivalently, as a change in the hierarchy where the local minima
cease to be the most probable stationary points.

Although our analysis is based mainly on one toy model, we argue that the discussed top-
pling mechanism is likely to be a universal feature of glass-like transition. To this end, we
analyse the constrained random energy landscape model (1) with the fixed energy constraint
modifying the vicinity of the glassy transition and the spherical spin-glass model (15) introduc-
ing a toppling of dual hierarchy. In both cases we find the same toppling of stability hierarchy
driving transition between the simple and complex phases. We believe this is a generic fea-
ture—considered models are all linked to properties of the underlying random matrices which
in turn have known universal properties [29]. At the same time, we would like to emphasize
that the transition picture is dependent on two reasonable yet simplifying assumptions of the
annealed approximation (6) and the zero-temperature limit. Abandoning these assumptions
can introduce new phenomena. As an example, although the toppling phenomenon is also
expected to happen for the mixed spherical p-spin model considered in [30], working at finite
temperatures introduces new dynamical behaviour.

Finally, systems with asymmetric couplings have recently attracted considerable interest
due to their relevance in various contexts, e.g., neural networks or biological and ecological
systems. Our approach relies on the exact relation (18) between the average number of saddles
with instability index k and the density of the (k + 1)th eigenvalue of the random matrix in
the Kac–Rice integral. This allows for a quantitative of analysis of the transition region in the
annealed approximation. In the asymmetric setting no such relation is unknown. This makes

13
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extending our approach to the asymmetric settings, such as non-gradient random flows (cf (4))

ẋ = −μx + f(x), (21)

challenging. Away from the transition region, one can use tools of the large deviation theory
for non-Hermitian matrices and work out the annealed density of the instability index for the
random flow (21) [15]. Interestingly, in the left tail of the transition region this density is given
by exactly the same functional expression as one found in this paper in the toppling region.
Therefore, one may expect the toppling mechanism at work for the random flows (21) and their
variations [31, 32]. However, it is unclear whether the intuition based on our annealed calcu-
lations in the symmetric case could be helpful in the asymmetric world at large. For example,
recent work [33] on the generalized Lotka–Volterra model with random symmetric interac-
tions argues that adding weak asymmetric interactions completely wipes out marginally stable
states and replaces locally stable states with chaotic attractors.
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Appendix A. Random energy landscape model

In this appendix we provide details of our calculations in the case of the random landscape
model (1).

A.1. Calculating 〈Nk〉 or the mean number of stationary points with index k

Counting statistics for populations of stationary points are given in terms of a formal density

ρk(x) =
∑
x(k)
∗

δ(x − x(k)
∗ ), (A.1)

where the summation is over all stationary points x(k)
∗ with fixed instability index k. This density

is in turn expressed by the celebrated Kac–Rice formula

ρk(x) = |det ∂i jE(x)|Θk

(
∂i jE(x)

)
δ (∂iE(x)) ,

where Heaviside function Θk is equal to 1 when the Hessian ∂i jE(x) has exactly k negative
eigenvalues and 0 otherwise. We defined three basic counting statistics:

• The total number of stationary points, Neq =
∑N

k=0

∫
ρk(x)dx;

• The number of stationary points with instability index k, Nk =
∫
ρk(x)dx;

• The number of stationary points with instability index up to k, N (k) =
∑k

n=0

∫
ρn(x)dx.
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Firstly, we combine the density of stationary points ρk(x) introduced in (A.1) with the
multidimensional Kac–Rice formula:

〈Nk〉 =
∫

dx

〈
|det ∂i jE(x)|Θk

(
∂i jE(x)

) N∏
i=1

δ (∂iE(x))

〉
V

,

where E(x) is the random function introduced in (1) and the Heaviside function Θk outputs 1
when the Hessian has exactly k negative eigenvalues and 0 otherwise. Averaging is taken w.r.t.
random field V .

Following [10], the averaging factorize into two terms since the derived fields ∂iV and ∂i jV
decouple as evidenced by the vanishing of their cross-correlations 〈∂iV∂klV〉 = 0:〈

|det ∂i jE(x)|Θk

(
∂i jE(x)

)
δ (∂iE(x))

〉
V

=
〈
|det ∂i jE(x)|Θk

(
∂i jE(x)

)〉
V
〈δ (∂iE(x))〉V . (A.2)

The first term is re-expressed using ∂i jE = μδi j + ∂i jV and an x independent matrix M:

〈
|det ∂i jE(x)|Θk

(
∂i jE(x)

)〉
V
= 〈|det (μ− M))|Θk (μ− M) 〈δ(∂V(x) + M)〉V〉M

, (A.3)

where the average 〈δ(∂V(x) + M)〉V is computed by first representing a multidimensional delta
function in terms of the Fourier integral and then integrating out the V dependent term by using

an identity
〈
[Tr P∂V]2

〉
= μ2

c
N

(
2 Tr P2 + (Tr P)2

)
with μc =

√
f ′′(0). Due to the Gaussianity

of the field V , the integral does not depend on x and is given by

〈δ(∂V(x) + M)〉V ∼ exp

{
− N

4μ2
c

[
Tr M2 − 1

3
(Tr M)2

]}
(A.4)

which is the joint pdf for the random matrix M that we average over in (A.3). This random
matrix is closely related to the GOE since M is real and symmetric. Although the second term
∼(Tr M)2 is non-standard, the formula can be recast into a proper GOE through introduction
of an additional Gaussian integration and a trivial rescaling. The result reads:

〈
|det ∂i jE(x)|Θk

(
∂i jE(x)

)〉
V
=

√
N
2π

∫ ∞

−∞
dt e−

N
2 t2 〈|det (μ+ μct − M)|

×Θk (μ+ μct − M)〉GOE, (A.5)

where the constant factor
√

N
2π is specified in the μ→∞ limit while the average is

taken over the GOE with joint pdf given by P(M) = c−1
N exp

(
− N

4μ2
c

Tr M2
)

and cN =

μ
N(N+1)/2
c 2N/2

(
2π
N

)N(N+1)/4
. The second term in (A.2) is computed trivially by Gaussian

integration:

∫
dx

〈
N∏

i=1

δ (∂iE(x))

〉
=

∫
dx

(i
√

2π f ′(0))N
exp

(
μ2x2

2 f ′(0)

)
=

1
μN

. (A.6)

Since the first term (A.5) is independent of x, we integrate out the space-like variable x as long
as f ′(0) < 0. Lastly, we bring together both terms (A.5) and (A.6) and find:

〈Nk〉 =
1
μN

√
N
2π

∫ ∞

−∞
dt e−

N
2 t2Kk,N (zt), (A.7)
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where zt = μ+ μct and the matrix-averaged term reads:

Kk,N (z) = 〈| det(z − M)|Θk(z − M)〉GOE. (A.8)

Formula (A.7) is a generalization to k �= 0 of equation found in [14]. The Heaviside function
is a symmetrized product each for eigenvalues of M:

Θk(M) =
∑
σ

θ
(
−λσ(1)

)
. . . θ

(
−λσ(k)

)
θ
(
λσ(k+1)

)
. . . θ

(
λσ(N)

)
.

It conditions the matrix M to have exactly N − k positive and k negative eigenvalues. To com-
pute Kk,N we follow the standard approach of random matrix theory [29] and change integration
variables from matrix elements Mi j to its eigenvalues λi:

Kk,N (z) = z−1
N

(
N
k

)∫
dλ1 . . .

∫
dλN

∏
i< j

|λi − λ j|
N∏

i=1

|z − λi|e
− N

4μ2
c
λ2

i

×
k∏

i=1

θ (−z + λi)
N∏

i=k+1

θ (z − λi) . (A.9)

The binomial is a combinatorial factor resulting from the symmetrization of the Heaviside

step function while zN = cN2Nπ− N(N+1)
4

∏N
i=1Γ(1 + i/2) =

(
2
√

2
)N(

2μ2
c

N

)N(N+1)/4∏N
j=1Γ(1 +

j/2) is the new normalization arising by integrating out the eigenvectors. In appendix A.2 we
derive the formula:

Kk,N (z) = CN e
Nz2

4μ2
c ρ(k+1)

N+1

(
z
√

N/(2μ2
c)
)

, (A.10)

where ρ(k+1)
N+1 is pdf of finding the (k + 1)th largest eigenvalue of a random matrix of size (N +

1) × (N + 1) and CN =
√

2
(

2
N

)N/2
μN

c Γ
(

N+1
2

)
. We plug it back to (A.7) with rescaling t →√

2t − m and obtain the final form given in (18):

〈Nk〉 = cNm−N
√

N
∫ ∞

−∞
ds e−N f (s;m)ρ(k+1)

N+1

(√
Ns
)

, (A.11)

where μ/μc = m, cN =
√

2
π

(
2
N

)N/2
Γ
(

N+1
2

)
and f (s; m) =

(
s − m√

2

)2
− s2

2 . We readily calcu-

late also formula for the cumulative variant
〈
N (k)

〉
as a sum:

〈
N (k)

〉
= cNm−N

√
N
∫ ∞

−∞
ds e−N f (s;m)

k∑
n=0

ρ(n+1)
N+1

(√
Ns
)
. (A.12)

We stress that both formulas (A.11) and (A.12) are exact.

A.2. Derivation of (A.10)

We establish a relation (A.10):

Kk,N (z) = CN e
Nz2

4μ2
c ρ(k+1)

N+1

(
z
√

N/(2μ2
c)
)

,
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where CN =
√

2
(

2
N

)N/2
μN

c Γ
(

N+1
2

)
. We start off from the lhs given by (A.9):

Kk,N (z) = z−1
N

(
N
k

)∫
dλ1 . . .

∫
dλN

∏
i< j

|λi − λ j|
N∏

i=1

|z − λi|e
− N

4μ2
c
λ2

i

×
k∏

i=1

θ (−z + λi)
N∏

i=k+1

θ (z − λi) ,

where zN =
(

2
√

2
)N(

2μ2
c

N

)N(N+1)/4∏N
j=1Γ(1 + j/2). We integrate out the Heaviside functions,

rescale λi =

√
2μ2

c
N μi and set z = y

√
2μ2

c
N to find:

Kk,N (z) = z−1
N

(
2μ2

c

N

)N(N−1)/4+N

κ̃k,N(y), (A.13)

with the rescaled quantity given by:

κ̃k,N(y) = (−1)k

(
N
k

)∫ ∞

y
dμ1 . . .

∫ ∞

y
dμk

∫ y

−∞
dμk+1 . . .

∫ y

−∞
dμN

×
∏
i< j

|μi − μ j|
N∏

i=1

(y − μi) e−
μ2

i
2 .

This formula is related to the probability that exactly k eigenvalues lie inside an interval J =
(y,+∞) (definition 8.1 in [34]):

EN(k, J) =
1

Z0,N(−∞)

(
N
k

)∫ ∞

y
dμ1 . . .

∫ ∞

y
dμk

∫ y

−∞
dμk+1 . . .

∫ y

−∞
dμN

×
∏
i< j

|μi − μ j| e−
μ2

i
2 =

Zk,N (y)
Z0,N(−∞)

, (A.14)

where Z0,N(−∞) = zN

(
μc =

√
N/2

)
=
(

2
√

2
)N∏N

j=1Γ(1 + j/2). Taking a derivative of EN

gives the pdf of the kth largest eigenvalue ρ(k)
N :

d
dy

EN(k, J) = ρ(k+1)
N (y) − ρ(k)

N (y), 1 � k � N − 1,

d
dy

EN(0, J) = ρ(1)
N (y),

d
dy

EN(N, J)= −ρ(N)
N (y).

In particular, setting k = 0 gives the pdf of the largest eigenvalue. These formulas are found
by using (A.14) as a probability distribution. We sum first k + 1 terms to obtain density ρ(k)

N :

d
dy

[
k∑

l=0

EN(l, J)

]
= ρ(k)

N (y). (A.15)
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On the other hand, the derivative of a single probability function EN+1 is related to the quantities
κ̃k,N through:

d
dy

EN+1(k, J) =
N + 1

Z0,N+1(−∞)
e−y2/2

[
κ̃k,N (y) − κ̃k−1,N(y)

]
, 1 � k � N,

along with d
dy EN+1(0, J) = N+1

Z0,N+1(−∞) e
−y2/2κ̃0,N(y). Due to the telescopic property of the

derivative, we sum up k + 1 terms in order to find a formula for a single κ̃k,N :

d
dy

[
k∑

l=0

EN+1(l, J)

]
=

N + 1
Z0,N+1(−∞)

e−y2/2κ̃k,N(y). (A.16)

We combine (A.13), (A.15) and (A.16) and plug back y = z
√

N
2μ2

c
to finally arrive at (A.10):

Kk,N (z) = CN e
Nz2

4μ2
c ρ(k+1)

N+1

(
z
√

N/(2μ2
c)
)

,

where constant prefactor is given by

CN = z−1
N

(
2μ2

c

N

)N(N−1)/4+N
Z0,N+1(−∞)

N + 1
=

√
2

(
2
N

)N/2

μN
c Γ

(
N + 1

2

)
.

A.3. Calculating asymptotic forms of 〈Nk〉 and
〈
N (k)

〉
across the transition

In this section we derive the asymptotic approximations of the averages (A.11) and (A.12) in
four regions detailed in section 2.2 and figure 1. All results are summarized in table 1.
A.3.1. Region (a) m > 1, m ∈ O(1) and k ∈ O(1). This case is straightforward as it has only
one minimum and does not depend on m:

〈Nk(m)〉 ∼ δk,0, m > 1, (A.17)

as was shown in [14] by the use of large deviation functions of probability density ρ(k)
N+1.

A.3.2. Region (b) m = 1 + δ/N1/3,δ > 0 and k ∈ O(1). We first calculate the asymptotics of
prefactors and exponential factor in (A.11):

cN(1 + δ/N1/3)−Ne
−N f

(
s;1+δ/N1/3

)
∼ 2 e

−N

(
s2
2 −

√
2s+ 1

2

)
−2δN2/3+

√
2N2/3δs−δ3/3

= 2 eNg(s;δ).

(A.18)

We then calculate the integral (A.11) through the saddle point method. To this end, we find the
saddle from g′(s; δ) = 0 as s∗ =

√
2 and expand all terms around s = s∗ + 1√

2
σN−2/3:

〈
Nk(m = 1 + δN−1/3)

〉
∼ 2 e−δ3/3

∫ ∞

−∞
dσ eδσF′

k(σ), δ > 0, (A.19)
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where ρ(k+1)
N+1

(√
2N + σ√

2N1/6

)
∼

√
2N1/6F′

k(σ) is the family of Tracy–Widom distributions

[25, 26] for the (k + 1)th largest eigenvalue of the GOE. Cumulative mean (A.12) is given by
a sum of k + 1 contributions:

〈
N (k)(m = 1 + δ/N1/3)

〉
∼ 2 e−δ3/3

∫ ∞

−∞
dσ eδσ

k∑
n=0

F′
n(σ), δ > 0. (A.20)

A.3.3. Region (c) m = 1 + δ/N1/2,δ ∈ R and k = κN1/4. In this region, we use an approximate
result found in [27, 28]. With k = κNγ and for γ ∈ (0, 1), the (k + 1)th largest eigenvalue of
GOE is asymptotically distributed as:

ρ(k+1)
N+1 (

√
Ns) ∼ 1√

2πσ2
k

exp

(
− (

√
Ns − μk)2

2σ2
k

)
,

with mean μk =
√

2N

(
1 −

(
3πk

4
√

2N

)2/3
)

and variance σk =
√

2 log k
N1/3(12πk)2/3 . To calculate the

cumulative mean (A.12) we first calculate the prefactor as:

cN(1 + δN−1/2)−N e−N f
(

s;1+δN−1/2
)
∼ 2 e

−N

(
s2
2 −

√
2s+ 1

2

)
−2δ

√
N+

√
2Nδs

= 2 eNg(s;δ). (A.21)

From g′(s; δ) = 0 we find the saddle-point at s∗ =
√

2 and expand integrand around s = s∗ +
σ/

√
N:

Ng(s∗ + σ/
√

N; δ) ∼ −σ2/2 +
√

2δσ. (A.22)

Now we turn to the asymptotic form of the sum inside the integral:

SκNγ (
√

Ns) =
κNγ∑
k=0

ρ(k)
N+1(

√
Ns)

in the general case γ ∈ (0, 1). Since we inspect the N →∞ asymptotics, we approximate the
sum by the Euler–Maclaurin formula:

SκNγ (
√

Ns) ∼ Nγ

∫ κ

0
dλρ(λNγ )

N+1 (
√

Ns) = DN

∫ κ

0
dλ e

N
2
3 (2+γ)

log N f (λ)g(λ),

where DN =
√ c1

π
N(1+8γ)/6√

log N , f (λ; s) = −c1

(
s −

√
2 + c2λ

2/3N2/3(γ−1)
)2
λ2/3 and g(λ) = λ1/3

with constants c1 =
1

4γ (12π)2/3 and c2 =
√

2
(

3π
4
√

2

)2/3
. In the next step we change variables

λ2/3 = x, λ1/3 dλ = 3
2 x dx:

SκNγ (
√

Ns) ∼ 3
2

DN

∫ κ2/3

0
x dx e

N
2
3 (2+γ)

log N f̃(x;s),

where f̃ (x; s) = f (λ = x3/2; s). Since we will eventually expand the sum around s = s∗ +
σ/

√
N, a natural scale is such that f̃ (x;

√
2 + σ/N1/2) = N−1 f̃ 0(x;σ). This happens when

19



J. Phys. A: Math. Theor. 55 (2022) 154001 J Grela and B A Khoruzhenko

2/3(γ − 1) = −1/2 or the powers of N in both terms agree. From now on we set γ = 1/4:

SκN1/4 (
√

Ns) ∼ 3
2

DN

∫ κ2/3

0
x dx e

√
N

log N f̃0(x;σ),

where f̃ 0(x;σ) = −c1(σ + c2x)2x. Saddle point in above integral is given by x∗ = − σ
c2

and

must lie within the integration interval x∗ ∈ (0,κ2/3) otherwise its leading order contribution

vanishes. We set x = x∗ + y
( √

N
log N

)−1/2
and compute the resulting integral:

SκN1/4 (
√

Ns) ∼ 3
2

DN e
√

N
log N f̃0(x∗;σ)x∗

√
2π

− f̃ ′′0(x∗;σ)

√
log N
N1/4

θ(x∗)θ(κ2/3 − x∗).

Since θ(x∗) = θ(−σ), θ(κ2/3 − x∗) = θ(σ + c2κ
2/3), f̃ 0(x∗;σ) = 0 and f̃ ′′0(x∗;σ) = 2c1c2σ.

Finally, we obtain

SκN1/4 (
√

Ns) ∼ 23/4N1/4 1
π

√
−σθ(−σ)θ(σ + c2κ

2/3). (A.23)

We combine (A.22) and (A.23) and plug them back to (A.12) which result in the final formula
given in table 1:

〈
N (κN1/4)(m = 1 + δ/N1/2)

〉
∼ 2N1/4 23/4

π

∫ c2κ
2/3

0
dσ

√
σ e−

σ2
2 −

√
2σδ , (A.24)

where c2 =
√

2
(

3π
4
√

2

)2/3
. For completeness, we also take its derivative:

d
dκ

〈
N (κN1/4)(m = 1 + δ/N1/2)

〉
∼ 2N1/4 23/4

π

(
2
3

c3/2
2 e−

c2
2
2 κ4/3−

√
2

2 c2δκ
2/3
)
. (A.25)

A.3.4. Region (d) 0 < m < 1, m ∈ O(1) and k = κN. Lastly, we consider the complexity
region with an extensive index variable. In this case we use a result found in [27, 28] valid
for k = κN:

ρ(k+1)
N+1 (

√
Ns) ∼ 1√

2πσ2
k

exp

(
− (

√
Ns − μk)2

2σ2
k

)
,

with μk = qk

√
2N and σk =

√
log N

2N(1−q2
k )

. The quantile parameter qk = t−1(k/N) is the inverse

cdf of the Wigner’s semicircle law:

t(λ) =
2
π

∫ 1

λ

√
1 − x2 dx =

1
π

(
arccos λ− λ

√
1 − λ2

)
. (A.26)
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It is expressed in terms of an inverse incomplete beta function defined through ba,b(Ba,b(z)) = z
and where ba,b(z) =

∫ z
0 ua−1(1 − u)b−1du and t−1(x) = 2B 3

2 , 3
2
(1 − x) − 1. We follow essen-

tially the same steps as in the toppling region (c), the sum in (A.12) is asymptotically given by:

SκN(
√

Ns) ∼ N
∫ κ

0
dλ ρ(Nλ)

N+1(
√

Ns) ∼ N√
π

√
N

log N

∫ κ

0
dλ e

N2
log N f̃(λ)g(λ),

with a rescaled quantile function Qλ = qλN we denote f̃ (λ) = −(s − Qλ

√
2)2(1 − Q2

λ) and
g(λ) =

√
1 − Q2

λ. We find an approximate value for the integral by the saddle point method.
First, there are three saddles:

λ0
∗ = 1 − B 3

2 , 3
2

(
1
4

(2 −
√

2s)

)
,

λ±
∗ = 1 − B 3

2 , 3
2

(
1

16
(8 +

√
2s ±

√
32 + 2s2)

)
,

where λ0
∗ is the extremum. Leading order asymptotics is found when λ0

∗ ∈ (0,κ), otherwise

the integral is subleading. We expand λ = λ0
∗ + x

(
N√

log N

)−1
and, after integrating out the x

variable, find

SκN(
√

Ns) ∼ N√
π

√
N

log N

√
log N
N

√
2π

− f̃ ′′(λ0
∗)

e
N2

log N f̃(λ0
∗)g(λ0

∗)θ(λ0
∗)θ(κ− λ0

∗).

We evaluate some of the terms given above:

θ(λ0
∗) = θ(

√
2 − s),

θ(κ− λ0
∗) = θ(s −

√
2Qκ),

f̃ (λ0
∗) = 0,

g(λ0
∗) =

√
1 − s2/2,

f ′′(λ0
∗) = −π2.

We bring these factors together and the sum SκN(
√

Ns) is equal to

SκN(
√

Ns) ∼
√

N
1
π

√
2 − s2θ(

√
2 − s)θ(s −

√
2Qκ) (A.27)

which is the Wigner’s semicircle law truncated at s =
√

2Qκ. We plug back above formula to
(A.12):

〈
N (κN)(m)

〉
= cNm−NN

∫ √
2

√
2Qκ

ds e−N f (s;m) 1
π

√
2 − s2.

Lastly, the large N contribution to this integral reads:

∫ √
2

√
2Qκ

ds e−N f (s;m) 1
π

√
2 − s2 ∼ 2√

πN

√
1 − m2 e

Nm2
2 θ(1 − m)θ(m − Qκ)
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while the prefactor is cNm−NN ∼ 2N e−N/2−N ln m. Together, they form the final result given in
table 1:

〈
N (κN)(m)

〉
∼ 4

√
N/π

√
1 − m2θ(1 − m)θ(m − Qκ)eNΣeq(m), m ∈ (0, 1), (A.28)

where Σeq(m) = 1
2 (m2 − 1) − ln m. The corresponding pdf is found by differentiation:

d
dκ

〈
N (κN)(m)

〉
= 4

√
N/π

√
1 − m2θ(1 − m)δ(κ− t(m))eNΣeq(m), m ∈ (0, 1),

where we used d
dκθ(m − Qκ) = δ(κ− t(m)). Closely related formula was found by a different

approach in [11, 12].

A.4. Calculating asymptotic forms of 〈Neq〉 across the transition

To obtain the mean number of all stationary points we can either follow the same route as
in the previous section when deriving the fixed index case or simply use the fact that it is a
special case of the cumulative distribution (A.12). For k = N, we find Neq = N (N) since the
sum of the individual eigenvalues pdf’s summed over all eigenvalues gives the total density∑N

k=0ρ
(k+1)
N+1 = ρN+1:

〈Neq〉 = cNm−N
√

N
∫ ∞

−∞
ds e−N f (s;m)ρN+1

(√
Ns
)
. (A.29)

We compute the asymptotics of (A.29) in all four regions detailed in section 2.2 and figure 1.
Due to similarities between (A.29) and (A.11), (A.12), in many steps we will reuse formulas
obtained in appendix A.3.
A.4.1. Region (b) m = 1 + δ/N1/3,δ > 0. The calculation of 〈Neq〉 in this region was found in
[13]. The prefactor was already found in (A.18). Likewise, the saddle point method applied to
the integral produces the same formula (A.19). The only difference is the integrand which we
find in proposition 9 of [35]:

ρN

(
y =

√
2N +

α√
2N1/6

)
∼

√
2N1/6ρedge(α), (A.30)

where ρedge(α) =
(
Ai′(α)

)2 − α(Ai(α))2 + 1
2 Ai(α)

(
1 −

∫∞
α Ai(t)dt

)
is the microscopic spec-

tral density of the GOE near the spectral edge. The final formula given in table 1 reads:

〈
Neq(m = 1 + δN−1/3)

〉
∼ 2 e−δ3/3

∫ ∞

−∞
eαδρedge(α)dα, δ > 0. (A.31)

A.4.2. Region (c) m = 1 + δ/N1/2, δ ∈ R. In this region, the prefactor was already found in
(A.18) while the exponential term is given in (A.22). As in appendix A.3.3, the integral over s
is found through the saddle point method around s =

√
2 + σ/N1/2:

√
N ds ρN+1

(√
Ns
)
= dσ ρN+1

(√
2N + σ

)
∼ dσ N1/4 23/4

π

√
−σθ(−σ),
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where we use the macroscopic GOE spectral density ρN(x) ∼ π−1
√

2N − x2. Lastly, we collect
these coefficients and the final formula given in table 1 reads:

〈
Neq(1 + δN−1/2)

〉
∼ 2N1/4 23/4

π

∫ ∞

0

√
σ e−σ2/2−

√
2δσdσ, (A.32)

which, after rescaling σ → |δ|σ, recreates (102) of [13].
A.4.3. Region (d) 0 < m < 1, m ∈ O(1). Finally, we find the mean number of all stationary
points in the complexity region. Firstly, we evaluate the integral (A.29):

∫ ∞

−∞
ds e−N f (s;m)ρN+1

(√
Ns
)

using the saddle point method. Solution to f ′(s; m) = 0 gives the saddle s∗ =
√

2m and the
integral is expanded around s = s∗ + σN−1/2:

∫ ∞

−∞
ds e−N f (s;m)ρN+1

(√
Ns
)
=

eNm2/2

√
N

∫ ∞

−∞
dσ e−

1
2 σ

2
ρN+1(

√
2Nm + σ). (A.33)

The spectral density ρN is again approximated using the Wigner’s semicircle law:

ρN(
√

2Nm + σ) ∼
√

2N
π

√
1 − m2. (A.34)

The formula above does not depend on the parameter σ so in (A.33) we are left with a Gaussian
integral

∫∞
−∞dσ e−

1
2 σ

2
=

√
2π. The asymptotic formula for the prefactor of 〈Neq〉 reads:

cNm−N
√

N ∼ 2
√

N e−N/2−N ln m. (A.35)

Finally, we collect (A.33)–(A.35) to reach the final result given in table 1:

〈Neq(m)〉 ∼ 4
√

N/π
√

1 − m2 eNΣeq(m), m ∈ (0, 1), (A.36)

whereΣeq(m) = 1
2 (m2 − 1) − ln m. The exponential part of this formula was calculated in (18)

of [10].

Appendix B. Random energy landscape model with constraint E0=E(x)

In this section we consider a variant of the toy model (1):

E(x) =
μ

2
x2 + V(x), with E0 = E(x), (B.1)

where we restrict to solutions of a fixed energy E0. In particular, we introduce the means
〈nk〉 , 〈neq〉 and

〈
n(k)

〉
analogous to the quantities introduced in section 2.1 but with an addi-

tional term δ (E0 − E(x)). Since both 〈neq〉 and
〈
n(k)

〉
are easily derived from the cumulative
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mean 〈nk〉, in what follows we consider only the latter quantity. Firstly, we write down its
definition:

〈nk(E0)〉 =
∫

dx〈ρk(x)δ (E0 − E(x))〉V , (B.2)

where the E0 dependence is explicitly stated. The mean number of stationary points with
instability index k 〈Nk〉 is related to (B.2) through an integral 〈Nk〉 =

∫
dE0 〈nk(E0)〉. By

essentially the same steps as in appendix A.1 (also [12]), we arrive at the formula:

〈
nk

(
E0 = N

√
f0ε0

)〉
= cNm−N

√
N
∫ ∞

−∞
ds e−N f (s;m)GN(s; m, ε0)ρ(k+1)

N+1

(
s
√

N
)

, (B.3)

with a function f (s; m) =
(

s − m√
2

)2
− s2/2 and a constant cN =

√
2
π

(
2
N

)N/2
Γ
(

N+1
2

)
. The

geometric function GN reads:

GN(s; m, ε0) = gN

∫ ∞

0
dR

1
R

e−Ng(R;m)−Nh(s,R;m,ε0),

with a constant gN =
√

2
π f0N

q√
q2−1

(
Nm2

2

)N/2
1

Γ(N/2) and functions g(R; m) = m2

2 R2 − ln R,

h(s, R; m, ε0) = 1
2(q2−1)

[√
2s − m + qε0 − m

2 R2
]2

.

We define parameters m = μ/μc and q = μc/μ̃c with μc =
√

f ′′0, μ̃c = − f ′0√
f0

and f is the

correlation function defining the random field V(x) with f (k)
0 = f (k)(0).

The cumulative mean 〈nk〉 given by (B.3) is in a form resembling the corresponding quantity
for the unconstrained toy model 〈Nk〉 given by (18) as closely as possible. The only additional
factor is the geometric function GN as the only term where the energy ε0 enters into the formula.
We can check that indeed

∫
dE0 GN = 1 and (B.3) is reduced to the previously studied (18).

Also, we reduce to (18) in the limit q →∞ where also GN → 1.
Lastly, we readily find an expression for the number of all stationary points at a fixed energy

E0:

〈
neq

(
E0 = N

√
f0ε0

)〉
= cNm−N

√
N
∫ ∞

−∞
ds e−N f (s;m)GN(s; m, ε0)ρN+1

(
s
√

N
)
.

B.1. Phase space and calculating the total mean 〈neq〉

We turn to inspecting the phase space which, in contrast to the toy model (1), is two-
dimensional as we vary both the coupling strength m and the energy level ε0. We first study the
behaviour of

〈
neq

(
E0 = N

√
f0ε0

)〉
. Since the prefactor cNm−N

√
NgN ∼

√
N, in what follows

we calculate only the integral

I(m, ε0) =
∫ ∞

−∞
ds
∫ ∞

0
dR

1
R

e−NF(s,R;m,ε0)ρN+1

(
s
√

N
)

, (B.4)

with F(s, R, m, ε0) = f (s; m) + g(R; m) + h(s, R; m, ε0). We first inspect the macroscopic
phase space based on analysis of (B.4) as summarized in figure 2.
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B.1.1. Macroscopic scale m ∈ O(1) and m < mc. We calculate a leading order contribution
via the saddle point method. The relevant saddle points are:

ssp =
Δ(m, ε0) + q(mq − ε0)√

2(1 + q2)
, Rsp =

√
Δ(m, ε0) − q(mq − ε0)√

m
, (B.5)

where Δ(m, ε0) =
√

2(1 + q2) + q2(mq − ε0)2. The correct saddles were chosen so that both
Rsp > 0 and ssp > 0. The latter condition ssp > 0 is true for values of m ∈ (0, mc) with

mc = 1 +
1 + 2qε0

2q2
. (B.6)

We expand the integral I(m, ε0) around s = ssp + σ/N1/2, R = Rsp + ρ/N1/2:

I(m, ε0) ∼ 1√
N

e−NFsp ,

where Fsp = F(ssp, Rsp) and we skipped the N-independentprefactor to focus on the complexity
exponent:

〈
neq(E0 = N

√
f0ε0)

〉
∼

√
N eNΣ<

eq(m;ε0), m < mc, (B.7)

with the complexity exponent given by Σ<
eq(m, ε0) = −F(ssp, Rsp) with function F defined in

(B.4). Since m > 0 is positive, when mc becomes negative, the leading contribution to 〈neq〉
vanishes. From mc = 0 we find an energy threshold (ε0)th = − 1+2q2

2q below which complexity
exponent is always negative (grey dot in the left plot in figure 2).

An implicit equation

Fsp = F(ssp(m, ε0), Rsp(m, ε0)) = 0 (B.8)

defines two curves ε0 = ε±(m) (11) in the (ε0, m)-plane (see the left plot in figure 2) where the
complexity exponent Σeq changes sign and we move between simple and complex regions.
Points on these curves are denoted by ((ε0)∗, m∗). In particular, for value (ε0)∗,max = − 1

2q
(dashed line in the left plot in figure 2) sign change happens at m∗,max = 1.

For ε0 = (ε0)∗,max and in the large q limit, we recreate the complexity exponent for the

unconstrained model in the complexity region (A.36) limq→∞ Σ<
eq

(
m, ε0 = − 1

2q

)
= m2−1

2 −
log m = Σeq.
B.1.2. Macroscopic scale m ∈ O(1) and m > mc. In the m > mc with mc defined in (B.6), we
use a large deviation result for the spectral density:

ρN+1

(
s
√

N
)
∼ e−Nφ(s),φ(s) =

1
2

s
√

s2 − 2 − ln

(
s +

√
s2 − 2√
2

)
, s >

√
2,

and compute the resulting integral I(m, ε0):

I(m, ε0) ∼
∫ ∞

√
2

∫ ∞

−∞

dR
R

ds e−NF , F = F + φ,
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where F was defined in (B.4). From now on, we track only the exponential part. From ∂sF =
0, ∂RF = 0 we find the relevant saddles as

s′sp =
1

2
√

2q

(
(mq − ε0)(1 + 2q2) + (1 − 2q2)

√
(mq − ε0)2 − 2

)
,

R′
sp =

√
q
m

√
mq − ε0 −

√
(mq − ε0)2 − 2),

where from s′sp >
√

2 we read off the condition m > mc with mc given by (B.6). The exponen-
tial contribution to the integral is I(m, ε0) ∼ e−NFsp with Fsp = F(s′sp, R′

sp) + φ(s′sp). The mean
total number is given by

〈
neq(E0 = N

√
f0ε0)

〉
∼ eNΣ>

eq(m;ε0), m > mc, (B.9)

where Σ>
eq(m; ε0) = −F(s′sp, R′

sp) − φ(s′sp). Function Fsp = 0 vanishes for ε0 = − 1
2q and

m > mc. For different values of ε0 we find Fsp > 0 and so the complexity exponent is negative.
B.1.3. Microscopic scale in the vicinity of (m∗,max, (ε0)∗,max). We expand the complexity
exponents Σ<

eq and Σ>
eq at the boundary m = mc:

Σ<
eq(m) ∼ Σ<

eq(mc) + (m − mc)Σ
<
eq(mc)′ +

1
2

(m − mc)2Σ<
eq(mc)′′ + · · · ,

Σ>
eq(m) ∼ Σ>

eq(mc) + (m − mc)Σ
>
eq(mc)

′ +
1
2

(m − mc)
2Σ>

eq(mc)
′′ + · · · ,

where from explicit formulas for both complexity exponents we find two first terms in the
expansion equal Σ<

eq(mc) = Σ>
eq(mc),Σ<

eq(mc)′ = Σ>
eq(mc)′ and the discontinuity happens for

the quadratic term Σ<
eq(mc)′′ �= Σ>

eq(mc)′′. Hence, the proper microscopic scaling is

m = mc + δ/N1/2, ε0 = (ε0)c + ε/N1/2

with points related by mc = 1 + 1+2q(ε0)c
2q2 . It contains the critical point (m, ε0) =(

m∗,max, (ε0)∗,max
)
=
(

1,− 1
2q

)
which we deal with in what follows. In the right plot of

figure 2 we graph a detailed picture of phase space near this critical point.
We expand the integral (B.4) with the saddle point method around

(
m∗,max, (ε0)∗,max

)
:

I

(
m = 1 + δ/N1/2, ε0 = − 1

2q
+ ε/N1/2

)

∼ c′N
N

∫ ∞

−∞
dσ e

2
√

2q(qδ−ε)
2q2−1

σ− 2q2+3
2(2q2−1)

σ2

ρN+1(
√

2N + σ)

with constant c′N =
√

2π
√

q2−1
2q2−1 e

− (δ−2qε)2

4(2q2−1) . We use the Wigner’s semicircle law

ρN+1(
√

2N + σ) ∼ N1/4 23/4

π

√
−σ θ(−σ)
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and obtain the mean number of minima near the threshold energy ε0 = (ε0)∗,max + ε/
√

N:

〈
neq(m = m∗.max + δ/N1/2; E0 = N

√
f0(ε0)∗,max +

√
N f0ε)

〉
∼ N1/4

∫ ∞

0
dσ

√
σ e

− σ2
2 − a1√

2a2
σ
,

(B.10)

with parameters a1 = 2
√

2q(qδ−ε)
2q2−1

, a2 =
2q2+3

2(2q2−1)
and an unspecified N-independent prefactor.

B.1.4. Microscopic scale in the vicinity of m = mc. In the previous section we investigated the
vicinity of one point in the phase space marked by a grey square in both plots of figure 2. Now
we look at the behaviour near the line m = mc:

m = mc +
δ

N1/2
, ε0 = (ε0)c +

ε

N1/2
.

The result reads〈
neq

(
m = mc + δ/N1/2; E0 = N

√
f0((ε0)c + ε/N1/2)

)〉
∼ eNΔ0+

√
NΔ1+Δ2

∫ ∞

0
dσ

√
σ e

− σ2
2 − a1√

2a2
σ
,

with

Δ0 = −1
2

log mc −
1
2

(1 − mc)(1 + q2(1 − mc)),

Δ1 =
1 − mc

2mc
(2qmcε− δ),

Δ2 =
4qm2

cε(δ − εq) − δ2
[
2q2(m2

c − 1) + 1
]

4m2
c (2q2 − 1)

,

and parameters a1, a2 defined before. For all values of m besides the critical value m = m∗,max =
1, the exponent function Δ0 < 0 is negative so the overall mean number of stationary points
〈neq〉 is exponentially small in N. Hence, along the line m = mc besides m = 1, the fractional
probabilities (6) loose its interpretation when the counting function in the denominator is
vanishing asymptotically with N.

B.2. Calculating cumulative means
〈
n(k)

〉

We calculate the cumulative mean
〈
n(k)

〉
as a sum of (B.3):

〈
n(k)

(
m; E0 = N

√
f0ε0

)〉
= cNm−N

√
NgN

∫ ∞

−∞
ds
∫ ∞

0

dR
R

e−NF(s,R;m,ε0)Sk(s
√

N),

where Sk(s
√

N) =
∑k

n=0ρ
(n+1)
N+1

(
s
√

N
)
. We have already found asymptotic approximations of

these sums in the two relevant cases with k = κN1/4 for (A.23) and k = κN in (A.27).
B.2.1. Macroscopic scale m < mc and k = κN. We use the result of (A.27) SκN(

√
Ns) ∼√

N
π

√
2 − s2θ(

√
2 − s)θ(s −

√
2Qκ) where Qκ is the quantile function defined as the inverse

cdf of the Wigner’s semicircle law (A.26). We essentially follow the same steps as in appendix
A.3.3 where the asymptotics of N (k) were found. We combine it with the same saddle point
analysis as in the derivation of 〈neq〉 asymptotics:〈

n(κN)(m; E0 = N
√

f0ε0)
〉
∼ θssp∈(

√
2Qκ ,

√
2) eNΣ<

eq(m;ε0), (B.11)
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where the saddle point ssp is given by (B.5).
B.2.2. Microscopic scale near (m∗,max, (ε0)∗,max) and k = κN1/4. We use a derivation of 〈neq〉
but with the result (A.23) for SκN1/4 (

√
Ns) ∼ 23/4N1/4 1

π

√
−σθ(−σ)θ(σ + c2κ

2/3). The formula
reads 〈

n(κN1/4)

(
m = 1 + δ/N1/2; E0 = −N

√
f0

2q
+
√

N f0ε

)〉

∼ N1/4
∫ √

2a2c2κ
2/3

0
dσ

√
σ e

− σ2
2 − a1√

2a2
σ
, (B.12)

where the notation is the same as in (B.10).

B.3. Calculating probabilities Pk

We can calculate the probabilities Pk provided by both total 〈neq〉 and cumulative
〈
n(k)

〉
means

for m < mc and around m = m∗,max. These correspond to regions (c) and (d) introduced in the
paper and describe the toppling and complexity regimes respectively. Since the aim of this
appendix is to focus on the toppling mechanism in the fixed energy model (B.1), we altogether
skip the simplicity and hierarchy regions (a) and (b) which are analogous to the unconstrained
model.
B.3.1. Region (c) m = m∗,max + δ/N1/2, ε0 = (ε0)∗,max + ε/N1/2 and k = κN1/4. We use (6) for
the annealed probabilities and simply calculate the ratio of (B.10) and (B.12):

PκN1/4 (δ, ε; q) ∼
∫ C2κ

2/3

0 dσ
√
σ e−

σ2
2 −Δσ∫∞

0 dσ
√
σ e−

σ2
2 −Δσ

,

where the parameters read

C2 =

√
2q2 + 3
2q2 − 1

√
2

(
3π

4
√

2

)2/3

, Δ =
2q2(δ − ε/q)√

(2q2 − 1)(q2 + 2)
.

The corresponding probability formula for the unconstrained toy model (1) given in table 1
has the same functional form with different parameters C2,Δ. An easy check ensures that
these parameters reduce in the large q limit limq→∞ C2 = c2 and limq→∞ Δ =

√
2δ. The tipping

point for the toppling mechanism in this model is when Δ changes sign or when δ = ε/q. The

maximum instability index in this model reads κ′
max =

(
−Δ

C2

)3/2
=

(
− 2q2(δ−ε/q)

c2

√
(2+q2)(2q2+3)

)3/2

.

Therefore, the underlying mechanism has the same characteristics as in the unconstrained toy
model (1) shown in figure 1.
B.3.2. Region (d) m < mc. The ratio of (B.7) and (B.11) gives the probability in the com-
plexity region:

PκN(m, ε0; q) ∼
θssp∈(

√
2Qκ ,

√
2)

θssp∈(0,
√

2)

, (B.13)

where ssp = Δ(m,ε0)+q(mq−ε0)√
2(1+q2)

and Δ(m, ε0) =
√

2(1 + q2) + q2(mq − ε0)2. We recast the con-

ditions on the saddle point into that for m, ε and so ssp > 0 means m > 0, ssp <
√

2 is translated
to m < mc while ssp >

√
2Qκ means m > m+ with m+ known only implicitly. For m ∈ (0, mc),
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the denominator in (B.13) is always equal to 1 and moreover we can invert the second inequal-

ity θ(ssp >
√

2Qκ) = θ
(
κ− t(ssp/

√
2)
)

with the Wigner’s semicircle law cdf given by (A.26):

t(s) =
2
π

∫ 1

s

√
1 − x2 dx.

As a check, we study q →∞ limit where limq→∞ ssp =
√

2m which again reduces to the for-

mula found in table 1. Finally, the cdf reads PκN(m, ε0; q) ∼ θ
(
κ− t(ssp/

√
2)
)

while its pdf

is a delta function:

d
dκ

PκN(m, ε0; q) ∼ δ
(
κ− t(ssp/

√
2)
)
.

Appendix C. p-spin spherical model

In this section we consider statistics of stationary points in a variant of p-spin spherical model
following closely [13]. The energy function we consider reads:

E◦(x) =
N+1∑

i1,...,ip=1

Ji1,i2,...,ip xi1 xi2 . . . xip +

N+1∑
i=1

hixi,

where x is now an N + 1 dimensional vector constrained to lie on the sphere
∑N+1

i=1 x2
i = N and

p � 2 is an integer. The symmetric coupling matrix J and the random external field hi are both
drawn from a Gaussian distribution with mean and variance given by:

〈
Ji1,i2,...,ip

〉
= 0,

〈
(Ji1,i2,...,ip)2

〉
=

J2

pNp−1
,

〈hi〉 = 0,
〈
h2

i

〉
= σ2.

If we treat the energy itself as a random field, its covariance structure reads:

〈E◦(x)〉 = 0,

〈E◦(x)E◦(x′)〉 = N f̃

(
x · x′

N

)
,

with the correlation function f̃ (u) = J2

p up + σ2u. We follow [13] and arrive at a formula for
the mean counting function:

〈Nk〉◦ = c̄J,p,σ

√
N
2π

∫
dt e−

N
2 t2K′

k,N (zt),

where c̄J,p,σ = 2
√
π

Γ
(

N+1
2

)( 2
N (J2 + σ2)

)−N/2
and zt = t

√
J2 p+ σ2. Average K′ is given by

K′
k,N (z) = 〈| det(z − H)|Θk(z − H)〉H ,
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where H is a matrix drawn from the GOE with jPDF P(H) ∼ exp
(
− N

4J2(p−1) Tr H2
)

. Lastly,

we use a relation (A.10) with replacement μ2
c → J2(p− 1) stemming from a different normal-

ization of the random matrix and find:

K′
k,N (z) = CN e

Nz2

4J2(p−1) ρ(k+1)
N+1

(
z√

2J2(1 − p)

√
N

)
,

with CN =
√

2
(

2J2(p−1)
N

)N/2
Γ
(

N+1
2

)
. We plug it back, rescale t = s

√
2J2(p−1)
J2 p+σ2 and find

〈Nk〉◦ = c′N

∫
ds e

−N
2

J2(p−2)−σ2

J2 p+σ2 s2

ρ(k+1)
N+1

(√
Ns
)

,

with c′N = 2
√

2N
√

J2(p−1)
J2 p+σ2

(
J2(p−1)
J2+σ2

)N/2
. Lastly we introduce a single parameter B = J2(p−2)−σ2

J2 p+σ2

so that

〈Nk〉◦ = c′N

∫
ds e−

NB
2 s2

ρ(k+1)
N+1

(√
Ns
)

, (C.1)

where the constant reads c′N = 2
√

N
(

1+B
1−B

) N+1
2
√

1 − B. We observe that for p � 2, the param-

eter B ∈
(
−1, p−2

p

]
. For completeness we also write down the total and the cumulative number

of stationary points:

〈
N (k)

〉
◦ = c′N

∫
ds e−

NB
2 s2

k∑
n=0

ρ(n+1)
N+1

(√
Ns
)

,

〈Neq〉◦ = c′N

∫
ds e−

NB
2 s2

ρN+1

(√
Ns
)
.

Formula for 〈Neq〉◦ agrees with (41) of [13].

C.1. Regions

According to [13], there exist four regions as in the toy model (1). Parameter B combining J,
σ and p serves a role analogous to the coupling strength m. The scaling parameters for B and
the instability index k in all the regions are summarized in table 2. As before, regions (a) and
(d) are macroscopic with B ∈ O(1) and region (b), (c) are microscopic with B ∈ O(N−1/3) and
B ∈ O(N−1). Toppling region has a different scaling in comparison to the toy model (1) where
m scaled as O(N−1/2). Consequently, the instability index scaling is k = κN in regions (c) and
(d).

C.2. Results on the total mean number 〈Neq〉◦
〈Neq〉 across all four regions of change was calculated in [13]. These results are summarizes in
the last column of table 2. In comparison to table 1, regions (a) and (b) look similar although,
due to topological constraints, the minimal number of total stationary points is 2. Regions (c)
and (d) behave similarly to analogous regions in the toy model although the scaling with N in
(c) is different.
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C.3. Results on the cumulative mean number
〈
N (k)

〉
◦

Although previously we mainly cited [13], in this section most formulas are completely or
partially new. We expand cumulative means around points of total stability k = 0 and total
instability k = N due to topological constraints present in the system. In particular, this con-
straint is most clearly manifested in the total number of all stationary points 〈Neq〉◦ being equal
to 2 in the simple region (a). Closer inspection conducted in [13] reveals that stationary points
in the simple region are necessarily a total minimum with instability index k = 0 and a total
maximum with k = N. This fact has consequences also in the toppling region (c).

C.4. Calculating probabilities Pk

With the knowledge of
〈
N (k)

〉
◦ and 〈Neq〉◦ the annealed probabilities, (6), are easily computed

from the results in the previous two sections. The results are summarized in table 2. Afore-
mentioned topological constraint is manifested across all regions as symmetries of pdfs upon
substitutions k → N − k and κ→ 1 − κ. All results in this section are presented in figure 3
where the symmetry is evident.
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