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We study the statistics of the kinetic (or, equivalently, potential) energy for N noninteracting fermions in
a 1d harmonic trap of frequencyω at finite temperature T. Remarkably, we find an exact solution for the full
distribution of the kinetic energy, at any temperature T and for any N, using a nontrivial mapping to an
integrable Calogero-Moser-Sutherland model. As a function of temperature T and for large N, we identify
(i) a quantum regime, for T ∼ ℏω, where quantum fluctuations dominate and (ii) a thermal regime, for
T ∼ Nℏω, governed by thermal fluctuations. We show how the mean and the variance as well as the large
deviation function associated with the distribution of the kinetic energy cross over from the quantum to the
thermal regime as T increases.
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The abundance of fermionic systems in nature makes
them a fundamental subject to study in various areas from
astrophysics through atomic and nuclear physics all the
way to quantum information theory. The number of
fermions N spans many orders of magnitude with values
typically varying from N ∼ 104–107 in cold atoms [1]
through N ∼ 102 in complex nuclei [2] to N ∼ 101 [3,4] in
qubits. The characteristic temperature T of these systems
can also be vastly different, with cold atoms operating at
T ∼ 10−7 K [5], while neutron stars reach T ∼ 1012 K [6].
The interactions between fermions in these systems also
vary quite widely, and in some systems, like in cold-atom
experiments, the interaction can even be tuned to almost
zero to make them effectively noninteracting [1,7,8].
However, even in this noninteracting limit, calculating

the properties of various observables such as the fermion
number fluctuations or the entanglement entropy of a
subsystem is highly nontrivial, due to the strong repulsion
(Pauli exclusion principle) between the fermions. This has
been demonstrated in a number of recent articles [9–11]. In
addition, the presence of a confining trap (as in cold-atom
experiments) breaks the translational invariance and makes
the problem even harder [12–18]. While some results can
be derived in the limit of large N and at low or high
temperatures, in general, it is hard to find the full temper-
ature and the N dependence of these observables. In
particular, it is important to study how the statistics of
an observable cross over from the low T limit (where
quantum fluctuations are dominant) to the opposite high T
limit (where the system is governed mostly by thermal
fluctuations). Hence, it would be interesting to find an
experimentally accessible observable whose statistics can
be computed analytically for all N and at all temperatures
T. In this Letter, we show that the statistics of the kinetic (or
potential) energy of N noninteracting fermions in a

harmonic trap can be computed exactly for all N and T.
Our results demonstrate precisely how the quantum to
thermal crossover in the statistics of this observable takes
place as a function of the temperature (see Fig. 1). We note
that this quantum to thermal crossover is not limited to
this specific observable (kinetic or potential energy) but
actually also occurs for other measurable observables such
as the number fluctuations or the entanglement entropy. For
the kinetic (or potential) energy. we are able to compute this
crossover function analytically for any fixed N and at any
T, and hence our result provides a useful benchmark for the
quantum to thermal crossover expected to be present for
other measurable observables as well.
We consider the very simple system of N spinless

noninteracting fermions in a 1d harmonic trap with the
Hamiltonian

FIG. 1. Schematic sketch of the temperature axis with a clear
separation between the quantum regime T ∼ ℏω and the thermal
regime T ∼ Nℏω, with the crossover regime shown as a shaded
region. In each region, we also plot the rate functions ϕq and ϕth

defined in the text.
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ĤN ¼
XN
i¼1

�
p̂2
i

2m
þ 1

2
mω2x̂2i

�
: ð1Þ

With a trivial rescaling x̂i → x̂i=ðmωÞ, it is easy to see that
x̂i and p̂i play a symmetric role in ĤN . Consequently,
the total kinetic energy ÊK ¼ P

N
i¼1 p̂

2
i =ð2mÞ and the total

potential energy ÊP ¼ P
N
i¼1 x̂

2
i =ð2mÞ (in the rescaled

variables) are essentially the same observables. However,
since they do not commute, they cannot be measured
simultaneously. For example, the potential energy ÊP can
be measured, in principle, by a quantum-gas microscope
[19,20], where the positions of individual particles are
accessible experimentally. In contrast, the kinetic energy
ÊK should be accessible in the time-of-flight experiments
[21,22], where the particles’ momenta are measured typ-
ically. Hence, ÊP, or equivalently ÊK, is a natural candidate
for an experimentally accessible observable. In this Letter,
we compute exactly, for any N, the quantum and thermal
fluctuations of ÊP (or, equivalently, that of ÊK).
This system of noninteracting fermions in a harmonic

trap has been extensively studied in the recent past, at both
T ¼ 0 [13,14,23] and finite T > 0 [16,18]. Several observ-
ables, including, for instance, the average density and the
density-density correlation functions as well as the statistics
of the rightmost fermion, have been studied in the large N
limit [16,18]. At T ¼ 0 exactly, the many-body ground-
state wave function is a Slater determinant of single-particle
harmonic oscillator wave functions and can be computed
exactly [13,14,23]. The quantum probability distribution
function (PDF) then reads

P0ðxÞ ¼ jΨ0ðxÞj2 ¼
1

Z0

YN
i<j¼1

jxi − xjj2e−α
2
P

N
i¼1

x2i ; ð2Þ

where Z0 is a normalization constant such thatR jΨ0ðxÞj2dx ¼ 1 with x ¼ ðx1;…; xNÞ and the inverse
length scale associated with the potential is

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
mω=ℏ

p
: ð3Þ

At T ¼ 0, the fluctuations of the positions in Eq. (2) are
entirely due to quantum fluctuations. In addition, the T ¼ 0
quantum PDF in Eq. (2) is identical to the joint distribution
of the eigenvalues of a random matrix belonging to the
Gaussian Unitary Ensemble (GUE). At finite temperature
T ≥ 0, the corresponding joint PDF of the positions of the
fermions reads

PTðxÞ ¼
1

ZT

X
E

jΨEðxÞj2e−βE; ð4Þ

with ZT ¼ P
Ee

−βE, where β ¼ 1=T and ΨEðxÞ denotes a
many-body eigenstate with energy E. The probability
measure in Eq. (4) now encodes both quantum and thermal

fluctuations. It is convenient to work in the position basis
where the operator ÊP is diagonal:

EP ¼ 1

2
mω2I; where I ¼

XN
i¼1

x2i : ð5Þ

Henceforth, we use I, for convenience, instead of the
potential energy EP (or the kinetic energy EK).
The PDF of I is given by

QTðIÞ ¼
�
δ

�
I −

XN
i¼1

x2i

��
T

; ð6Þ

where h…iT denotes an average with respect to the measure
PTðxÞ in Eq. (4). Its Laplace transform simply reads

~QTðpÞ ¼ he−p
P

N
i¼1

x2i iT: ð7Þ
T ¼ 0 case.—At T ¼ 0, the measure is given in Eq. (2),

where the normalization constant Z0 ≡ Z0ðα2Þ is only a
function of α2. Moreover, this dependence can be simply
obtained by rescaling xi → αxi in Eq. (2), which gives
Z0ðα2Þ ¼ Z0ð1Þα−N2

. Consequently, the Laplace trans-
form ~Q0ðpÞ in Eq. (7) with T ¼ 0 is immediately given by

~Q0ðpÞ ¼
Z0ðα2 þ pÞ
Z0ðα2Þ

¼
�

α2

α2 þ p

�
N2=2

: ð8Þ

Inverting this Laplace transform one obtains a gamma
distribution for I ¼ 2EP=ðmω2Þ:

Q0ðIÞ ¼
αN

2

ΓðN2=2Þ e
−α2IIN

2=2−1; I ≥ 0: ð9Þ

From Eq. (9), the mean hIi0 and the variance VarðIÞ0 ¼
hI2i0 − hIi20 are given, respectively, by

hIi0 ¼
N2

2α2
; VarðIÞ0 ¼

N2

2α4
: ð10Þ

Note that, in the large N limit, Q0ðIÞ in Eq. (9) can be
expressed in the large deviation form

Q0ðIÞ ∼ e−N
2ϕ0ðI=N2Þ; ð11Þ

where ϕ0ðyÞ ¼ α2y − ð1=2Þ½1þ ln ð2α2yÞ� is a convex rate
function with a minimum at y ¼ hIi0=N2 ¼ 1=ð2α2Þ.
The case T ≥ 0 and finite N.—Unlike the T ¼ 0 case,

where the PDF Q0ðIÞ is very simple to compute by
exploiting the connection to GUE random matrices in
Eq. (2), the corresponding PDF QTðIÞ at finite T is highly
nontrivial, as reflected in the complicated form of the
quantum PDF PTðxÞ in Eq. (4). Our main result in this
Letter is to show that the Laplace transform ~QTðpÞ in
Eq. (7) can be obtained, for any finite T, as the ratio of two
partition functions, albeit with two different temperatures
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~QTðpÞ ¼
ZT 0

ZT
; ð12Þ

where ZT ¼ P
Ee

−βE is the standard partition function at
temperature T ¼ 1=β and ZT 0 ¼ P

Ee
−β0E with β0 ¼ 1=T 0.

The effective temperature T 0 is related to T via a nontrivial
relation:

coshℏωβ0 ¼ coshℏωβ þ p
α2

sinhℏωβ: ð13Þ

In the limit T → 0, it is easy to see that one recovers
the result in Eq. (8). This result in Eqs. (12) and (13) is
obtained by using a mapping of the harmonically confined
noninteracting Fermi gas to an interacting Fermi gas
described by the Calogero-Moser-Sutherland (CMS) model
[24–26] and using some combinatorial properties of the
CMS model. Here, we briefly sketch the derivation of
these formulas, relegating the details to Supplemental
Material [27].
The mapping is achieved by transforming the

Hamiltonian in Eq. (1) to a new CMS Hamiltonian. In
the position basis, this transformation reads

~HN ¼ −eWðHN − E0Þe−W; ð14Þ

where W ¼ 1
4
mω2

P
ix

2
i −

P
j<k log jxj − xkj and E0 ¼

ðℏω=2ÞN2 is the ground-state energy of HN . The
CMS Hamiltonian ~HN can be written explicitly (see
Supplemental Material [27]). The eigenfunctions of
~HN are generalized Hermite polynomials labeled by
Young tableaux whose properties have been studied
recently [29–31]. Using these properties, we can show
(see Supplemental Material [27]) that Eq. (12) holds.
Moreover, the partition function ZT can be written explic-
itly as an N-fold product [27]:

ZT ¼
YN
i¼1

e−
τði−1Þ

2

2 sinh τi
2

; τ ¼ ℏωβ: ð15Þ

Below, we first analyze the mean and the variance for both
finite and large N.
Mean and variance.—By expanding ~QTðpÞ in Eq. (7)

around p ¼ 0 and using Eqs. (12) and (13), one gets

hIiT ¼ NðN − 1Þ
4α2

þ 1

2α2
XN
k¼1

k coth
τk
2
; ð16Þ

VarðIÞT ¼ 1

2α4
XN
k¼1

k2

sinh2 τk
2

þ coth τ
α2

hIiT: ð17Þ

While for the mean and the variance of I we thus have
explicit formulas for any N, its full distribution is hard to

obtain explicitly for finite N and T > 0. However, in the
large N limit this is possible as will be shown below.
We start by analyzing the mean and the variance in

Eqs. (16) and (17) in the limit of large N. To anticipate how
the temperature may affect the statistics of I, it is useful to
go back to T ¼ 0, where the system is in the ground state.
As discussed before, the Slater determinant characterizing
the ground-state wave functionΨ0ðxÞ consists of the lowest
N single-particle wave functions; i.e., one fills up the firstN
single-particle energy levels up to the Fermi energy
EF ¼ ðN − 1=2Þℏω, with one fermion at each level. As
one increases the temperature, one naturally encounters two
temperature scales (see Fig. 1 for a schematic representa-
tion). The first one corresponds to T ∼ ℏω, i.e., when the
thermal energy is of the order of the level spacing. In this
case, only the fermions near the Fermi level get excited to
higher levels. As T increases further and becomes of the
order of T ∼ EF ≈ Nℏω, all the fermions get affected and
one essentially arrives at a fully thermal state. Therefore,
when T ∼ ℏω, the system is sensitive to the discreteness of
the spectrum and the quantum fluctuations are dominant. In
contrast, for T ∼ EF, the thermal fluctuations take over the
quantum fluctuations. We would expect that the large N
behavior of the mean and variance of I will exhibit different
behavior in these two temperature scales. Indeed, our exact
results in Eqs. (16) and (17) demonstrate this explicitly.
By analyzing Eq. (16) (see Supplemental Material [27]),

we find for the mean of I

hIiT ∼

8<
:

N2

α2
Fqð T

ℏωÞ; T ∼ ℏω;

N2

α2
Fthð T

NℏωÞ; T ∼ Nℏω:
ð18Þ

The scaling functions are given by

FqðuÞ ¼
1

2
; FthðzÞ ¼ −z2Li2ð1 − e1=zÞ; ð19Þ

where Li2ðxÞ ¼
P∞

k¼1 x
k=k2 is the dilogarithm function.

While FqðuÞ is trivially a constant function, FthðzÞ is
nontrivial and has the asymptotic behaviors FthðzÞ →
Fthð0Þ ¼ 1=2 as z → 0 and FthðzÞ ∼ z as z → ∞. Thus,
starting from the high-temperature thermal scaling
regime, if one takes T ≪ Nℏω, using Fthð0Þ ¼ 1=2 one
gets hIiT ∼ N2=ð2α2Þ. In contrast, starting from the
low-temperature quantum scaling regime, if one takes
T ≫ ℏω, using FqðuÞ ¼ 1=2 (even as u → ∞), we get
hIiT ∼ N2=ð2α2Þ. This demonstrates an exact matching of
the scaling behavior of the mean across the two scaling
regimes. In Fig. 2, we plot α2hIiT=N2 as a function of T, for
both the exact result in Eq. (16) with N ¼ 30 and the large
N scaling behavior corresponding to the quantum and the
thermal regime.
Similarly, by analyzing the variance of I in Eq. (17) in

the large N limit, we get (see Supplemental Material [27])
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VarðIÞT ∼

8<
:

N2

2α4
Vqð T

ℏωÞ; T ∼ ℏω;

N3

2α4
V thð T

NℏωÞ; T ∼ Nℏω:
ð20Þ

The two scaling functions are given by

VqðuÞ ¼ coth
1

u
; V thðzÞ ¼ z

�
6FthðzÞ − 1 − coth

1

2z

�
;

ð21Þ
where FthðzÞ is given in Eq. (19). The asymptotics of these
scaling functions can be deduced easily. For example,
VqðuÞ ∼ 1þ 2e−1=ð2uÞ as u → 0 and VqðuÞ ∼ uþ 1=ð3uÞ
as u → ∞. Similarly, V thðzÞ ∼ z as z → 0 and V thðzÞ ∼
4z2 þ z=2 as z → ∞. Using these asymptotics, one can
check, as in the case of the mean, that the variances in the
quantum and in the thermal regime match smoothly as one
increases the temperature. Indeed, for T ≫ ℏω in the
quantum scaling regime, one gets, using VqðuÞ ∼ u for
large u, VarðIÞT ∼ N2T=ð2α4ℏωÞ. Likewise, taking T ≪
Nℏω in the thermal regime and using V thðzÞ ∼ z for small z,
we get the same result VarðIÞT ∼ N2T=ð2α4ℏωÞ, thus
ensuring a smooth matching of the variance. In Fig. 2,
lower panel, we plot 2α4VarðIÞT=N2 as a function of T, for
both the exact result in Eq. (17) with N ¼ 30 and the large
N scaling predictions in Eq. (20).
We now turn to the full distribution QTðIÞ [see Eq. (6)],

whose Laplace transform is given in Eq. (12). Inverting this
Laplace transform, using the Bromwich inversion formula,
we obtain

QTðIÞ ¼
1

2πi

Z
Γ
dpepIþln ~QTðpÞ; ð22Þ

where ~QTðpÞ ¼ ZT 0=ZT from Eq. (12) and the Bromwich
contour Γ is to the right of all singularities of the integrand.
Using Eq. (15), one finds ln ~QTðpÞ ¼ −½ðNðN − 1Þ×
ðτ0 − τÞÞ=4� −P

N
k¼1 log

sinh kτ0=2
sinh kτ=2 , where τ0 ¼ ℏωβ0 and β0

is given in Eq. (13). We then analyze Eq. (22) in the large N
limit, using the saddle point method.
We start with the quantum regime where T ∼ ℏω. In this

regime, u ¼ T=ðℏωÞ is thus the natural scaling variable.
For fixed u, Eq. (18) shows that the mean hIiT ∼ N2, while
Eq. (20) predicts that the variance VarðIÞT ∼ N2. For
typical fluctuations around the mean on the scale of the
standard deviation, one would expect from the general
central limit theorem a Gaussian form for QTðIÞ with the
above mean and variance. For larger atypical fluctuations,
the Gaussian form no longer holds. Both the central
Gaussian peak as well as the tails of QTðIÞ are actually
well described by a more general large deviation form,
QTðIÞ ∼ e−N

2ϕqðI=N2;uÞ, where ϕqðy; uÞ is a rate function.
For fixed u, as a function of y, ϕqðy;uÞ is expected to be a
convex function, vanishing quadratically at the minimum at
y ¼ y� ¼ hIiT=N2 [where hIiT can be read off from the
first line of Eq. (18)]. This quadratic form of the rate
function near its minimum reproduces the Gaussian peak in
QTðIÞ around I ¼ hIiT , with the correctN-dependent mean
and variance. By rescaling p → p=N and after a change of
variable (see Supplemental Material [27]), one can reduce
this integral in (22) into a form which can be evaluated, for
large N, by a saddle point method. Skipping the details (see
Supplemental Material [27]), we find that

ϕqðy; uÞ ¼
sinh−1U − u−1

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þU2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4y2α4U2

p
2U

;

ð23Þ
where U ¼ ½sinhð1=uÞ�=2yα2. We plot this function in the
left panel in Fig. 1. Note that at T ¼ 0, i.e., u ¼ 0, the rate
function ϕqðy; 0Þ ¼ ϕ0ðyÞ reduces to the zero temperature
rate function given in Eq. (11).
We now switch to the thermal regime where T ∼ Nℏω.

In this regime, hIiT ∼ N2 from Eq. (18) and VarðIÞT ∼ N3

from Eq. (20). For fixed z ¼ T=ðNℏωÞ, arguments similar
to the quantum regime would suggest thatQTðIÞ has a large
deviation form, QTðIÞ ∼ e−NϕthðI=N2;zÞ, where ϕthðy; zÞ is
the thermal rate function. Evaluating the integral over p in
Eq. (22) by a saddle point method (similar to the quantum
case), we can compute ϕthðy; uÞ. However, unlike in the
quantum case, its expression is less explicit (see
Supplemental Material [27]). For a plot of this function
ϕthðy; zÞ, see the right panel in Fig. 1. As in the case of the
mean and the variance, one can check that the quantum
ϕqðy; uÞ as u → ∞ matches with the thermal rate function
ϕthðy; zÞ as z → 0.
In this Letter, we have computed exactly the distribution

of the kinetic or potential energy of N noninteracting

FIG. 2. We plot the appropriately scaled mean (top panel) and
the variance (bottom panel) of the potential energy as a function
of T and forN ¼ 30. The solid black lines correspond to the exact
results in Eqs. (16) and (17), while the dotted (gray) and dashed
(red) lines correspond to the large N scaling results in the
quantum and the thermal regimes, respectively.
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fermions in a 1d harmonic trap, at all temperatures and for
any N. Our results demonstrate explicitly how the statistics
of the kinetic energy cross over from the low-temperature
quantum regime (T ∼ ℏω) to the high-temperature thermal
regime (T ∼ Nℏω). At a very high temperature, our results
reproduce the predictions of the Maxwell-Boltzmann
statistics, as expected. At low temperature, one might
naively expect that our results for fixed N could have
been obtained from the Fermi-Dirac statistics (valid for the
grand-canonical ensemble with a fixed chemical potential),
by using the equivalence between the canonical and grand-
canonical ensemble. However, it turns out that this equiv-
alence breaks down when T ∼ ℏω (quantum regime) [32].
Therefore, one cannot use the Fermi-Dirac statistics to
obtain the correct fixed N results at low T. Our results
demonstrate how the statistics of the kinetic energy can be
computed in the canonical ensemble at any T. Moreover,
we expect that this quantum to thermal crossover will also
hold, at least qualitatively, for other measurable observables
such as the number fluctuations or the entanglement
entropy. Finally, it will be interesting to extend our results
to nonharmonic traps in one and higher dimensions.
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Supplementary material
Kinetic energy of a trapped Fermi gas at finite temperature

J. Grela, S. N. Majumdar, G. Schehr

I. N FERMIONS IN A HARMONIC TRAP AT NON-ZERO TEMPERATURE T > 0

The Hamiltonian of a system of N spinless fermions confined in a harmonic trap reads:

ĤN = − ~2

2m

N∑
i=1

∂2
xi +

1

2
mω2

N∑
i=1

x2
i . (S-1)

whose eigenvalue problem is given as

ĤNΨE(x) = EΨE(x) , (S-2)

where ΨE(x) is the many-body eigenfunction with energy E. It can be constructed as a Slater determinant built from
the single particle eigenfunctions φni(xj)

ΨE(x) =
1√
N !

det
1≤i,j≤N

φni(xj) , with n1 > n2 > · · · > nN ≥ 0 , (S-3)

where the corresponding energy, labelled by n = (n1, · · · , nN ), is given by

E = En = ~ω
N∑
i=1

(ni + 1/2) . (S-4)

Note that (n1 + 1/2)~ω denotes the energy of the highest occupied single particle level. Similarly (n2 + 1/2)~ω,
(n3 + 1/2)~ω, etc. denote the second, third, etc. highest occupied single particle levels. We can thus also label the
many-body eigenfunctions by Ψn(x). The normalized single particle eigenfunction corresponding to the level n is
given by

φn(x) =

√
α√
π2nn!

e−
α2x2

2 Hn(αx) , (S-5)

with an inverse length-scale α =
√
mω/~.

At zero temperature (T = 0), the system is in its ground state. The ground state wave function Ψ0(x) is obtained
as the Slater determinant in Eq. (S-3) constructed from the first N levels of the harmonic oscillator with n =
(N − 1, N − 2, · · · , 0). In the ground state, the fermion positions fluctuate due to quantum fluctuations. Evaluating
the Slater determinant explicitly, the quantum probability distribution function (PDF) reads

P0(x) = |Ψ0(x)|2 =
1

Z0

N∏
i<j=1

|xi − xj |2e
−α2

N∑
i=1

x2
i

, (S-6)

where Z0 =
∫
|Ψ0(x)|2dx is the normalization constant. The ground state energy is given by the sum of the first N

single particle levels

E0 = ~ω
N−1∑
n=0

(n+ 1/2) =
1

2
~ωN2 . (S-7)

At finite temperature, the system has quantum as well as thermal fluctuations which are encoded in the temperature
dependent joint PDF

PT (x) =
1

ZT

∑
E

|ΨE(x)|2e−βE =
1

ZT

∑
n1>···>nN≥0

|Ψn(x)|2 e−βEn , (S-8)

with β = 1/T and ZT =
∑
E e−βE =

∑
n1>···>nN≥0 e

−βEn . The average value of any observable in the position basis
f(x) is then given by

〈f(x)〉T =
1

ZT

∑
n1>···>nN≥0

e−βEn

∫
dx |Ψn(x)|2f(x) . (S-9)
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A. Derivation of Eqs. (12) and (13)

We consider the potential energy in the position basis EP = (1/2)mω2I where I =
∑N
i=1 x

2
i . Its distribution is

given by

QT (I) =

〈
δ

(
I −

N∑
i=1

x2
i

)〉
T

, (S-10)

where 〈· · · 〉T denotes an average with respect to the measure PT (x) in Eq. (S-8). We denote its Laplace transform by

Q̃T (p) =
〈
e−p

∑N
i=1 x

2
i

〉
T

=

∫ ∞
0

e−p I QT (I) dI . (S-11)

Our goal is to show that the Laplace transform Q̃T (p) in Eq. (S-11) can be written as the ratio of two partition
functions at two different temperature as in Eqs. (12) and (13) of the main text. From now on, we will work only in
the position basis. To proceed, we follow Ref. [2] and make the following transformation to the Hamiltonian HN

H̃N = −eW (HN − E0)e−W , (S-12)

where E0 is the ground state energy in Eq. (S-7) and W (x) = 1
4mω

2
∑
i x

2
i −

∑
j<k log |xj − xk|. We read off from

Ref. [2] the transformed Hamiltonian:

H̃N =
~3ω

4m

N∑
i=1

∂2
xi − ~ω

N∑
i=1

xi∂xi +
~3ω

2m

∑
k 6=j

1

xj − xk
∂xj , (S-13)

which satisfies a modified eigenvalue equation

H̃N Ψ̃κ(x) = ẼκΨ̃κ(x) . (S-14)

The eigenvalues and eigenvectors of (S-2) and (S-14) are related by:

En = E0 − Ẽκ , Ψn(x) = e−W (x)Ψ̃κ(x) . (S-15)

The transformed Hamiltonian in Eq. (S-13) corresponds to a Calogero-Moser-Sutherland type model. The eigenvalue
equation in Eq. (S-14) admits a family of solutions in terms of generalised Hermite polynomials hκ that are labelled
by κ = (κ1, · · · , κN ) where κi’s are ordered (κi ≥ κi+1) positive integers. The corresponding eigenfunction and
eigenvalue read

Ψ̃κ(x) = hκ(αx) , Ẽκ = −~ω|κ| = −~ω
N∑
i=1

κi . (S-16)

The sequence κ can be arranged in a Young tableau whose i-th row contains ki boxes (see Fig. 1). Using (S-15), the
eigenfunctions and eigenvalues of (S-2) of the original Hamiltonian HN can then be expressed as

Ψn(x) =
α
N2

2

√
Nκ

e
−α2

2

N∑
i=1

x2
i
∏
j<k

|xj − xk|hκ(αx) , En =
~ω
2
N2 + ~ω|κ| , (S-17)

where |κ| =
∑N
i=1 κi and the constant

Nκ = 2|κ|Γ(|κ|+ 1) 2−N(N−1)/2 πN/2
N∏
j=1

Γ(2 + j) (S-18)

is chosen such that
∫
dx|Ψn|2 = 1.

We inspect the relation between the partitions κ and the excitations n. Recall that the ground state of the original
Hamiltonian is labelled by n(0) = (N − 1, N − 2, · · · , 0). For convenience, we denote n(0)

i = N − i for i = 1, 2, · · · , N .
Using this notation, we can then rewrite the energy eigenvalues of HN in Eq. (S-4) as

En = ~ω
N∑
i=1

(ni + 1/2) =
~ω
2
N + ~ω

N∑
i=1

n
(0)
i + ~ω

N∑
i=1

(ni − n(0)
i ) =

~ω
2
N2 + ~ω

N∑
i=1

(ni − n(0)
i ) . (S-19)
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Comparing the energy eigenvalues in Eqs. (S-17) and (S-19) leads to the natural identification

κi = ni − n0
i = ni + i−N , i = 1, 2, · · · , N , (S-20)

which then maps the excitations n onto the Young tableau κ. Since ni ≥ N − i (recall that n1 > n2 > · · · > nN ≥ 0),
we have κi ≥ 0 as well as κi ≥ κi+1 for all i = 1, 2, · · · , N . We give an example in Fig. 1.

n1
n2
n3
n4
n5
n6
n7
n8
n9

κ1
κ2
κ3
κ4
κ5
κ6
κ7
κ8
κ9

n κ

Figure 1. An example of a mapping between the excitation vector n and the Young tableau κ for N = 9, n =
(14, 13, 12, 10, 8, 7, 4, 3, 1) and κ = (6, 6, 6, 5, 4, 4, 2, 2, 1). The shaded region is the ground state excitation n(0) = (8, 7, · · · , 0).

We plug (S-17) into (S-9) and reformulate the original problem of computing the averages as

〈f(x)〉T =
1

ZT
tN

2/2
∑
κ

t|κ|
∫
dx |Ψn(x)|2 f(x) , (S-21)

where

t = e−~ωβ (S-22)

and the partition function

ZT = tN
2/2
∑
κ

t|κ| . (S-23)

Introducing

A(p) = (tα2)N
2/2

∫
dx e

−(p+α2)
N∑
i=1

x2
i
∏
j<k

|xj − xk|2
∑
κ

t|κ|

Nκ
hκ(αx)2 , (S-24)

where Nκ is given in Eq. (S-18), it follows that A(0) = ZT and in addition the Laplace transform in Eq. (S-11) can
be expressed as the ratio

Q̃T (p) =
A(p)

A(0)
. (S-25)

We next calculate A(p) using an identity in Ref. [2] that generalizes the Mehler kernel:

∑
κ

t|κ|

Nκ
hκ(αx)2 =

1

N0
(1− t2)−N

2/2e
− 2t2α2

1−t2

N∑
i=1

x2
i

0F0

(
2αt√
1− t2

x,
α√

1− t2
x
)
, (S-26)

where the generalized hypergeometric function 0F0 (with vector arguments) has the following expansion in terms of
Jack polynomials Cκ(x) (which are also labelled by Young tableaux):

0F0

(
2αt√
1− t2

x,
α√

1− t2
x

)
=
∑
κ

1

|κ|!

Cκ

(
2αt√
1−t2x

)
Cκ

(
α√

1−t2x
)

Cκ(1)
=
∑
κ

1

|κ|!

(
2tα2

1− t2

)|κ|
C2

κ(x)

Cκ(1)

=

∞∑
n=0

1

n!

(
2tα2

1− t2

)n ∑
|κ|=n

C2
κ(x)

Cκ(1)
, (S-27)
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where |κ| =
∑N
i=1 κi and 1 = (1, 1, · · · , 1). In these manipulations we use the fact that the Jack polynomials are

homogeneous in their arguments. We plug formulae (S-26) and (S-27) to (S-24) and find, after a rescaling of xi’s:

A(p) =
1

N0

(
tα2

1− t2

)N2/2 ∫
dx e

−
(
p+α2 1+t2

1−t2

) N∑
i=1

x2
i
∏
j<k

|xj − xk|2 0F0

(
2αt√
1− t2

x,
α√

1− t2
x
)

=

∞∑
n=0

(
t

Sp(t)

)n+N2/2

cn , (S-28)

where

Sp(t) =
p

α2
(1− t2) + (1 + t2) (S-29)

and the combinatorial coefficients

cn =
2n

N0n!

∑
|κ|=n

∫
dy
∏
j<k

|yj − yk|2 e
−

N∑
i=1

y2i C2
κ(y)

Cκ(1)
(S-30)

are independent of both t and p. Thus the partition function ZT = A(0) is given by

ZT ≡ ZT (t) =

∞∑
n=0

(
t

1 + t2

)n+N2/2

cn , where t = e−β~ω . (S-31)

Furthermore, using Eq. (S-28) we can then express the Laplace transform in Eq. (S-25) as the ratio

Q̃T (p) =

∞∑
n=0

(
t

Sp(t)

)n+N2/2

cn

∞∑
n=0

(
t

1+t2

)n+N2/2

cn

. (S-32)

Since the denominator is just the partition function itself, it is natural to ask whether the numerator can be expressed
as the same function ZT ′(t′) but with an effective t′ = e−β

′~ω where β′ = 1/T ′. Indeed this can be done by expressing

t′

1 + t′2
=

t

Sp(t)
, (S-33)

which is solved by

(t′)± = v ±
√
v2 − 1 , where v =

1

2t

(
1 +

p

α2
+ t2

(
1− p

α2

))
. (S-34)

Amongst the two roots, we choose t′− that ensures that as p→ 0, t′ → t, so that Q̃T (p→ 0) = 1. This gives the Eq.
(12) of the main text:

Q̃T (p) =
ZT ′(t′)
ZT (t)

, where t′ = v −
√
v2 − 1 . (S-35)

Finally, the new effective inverse temperature β′ can be related to β by eliminating v between t′ = v −
√
v2 − 1 and

v = 1
2t

(
1 + p

α2 + t2
(
1− p

α2

))
. Furthermore, using the identity, cosh−1v = − log(v −

√
v2 − 1) valid for v ≥ 1 gives

our final result announced in Eq. (13) of the main text

cosh ~ωβ′ = cosh ~ωβ +
p

α2
sinh ~ωβ . (S-36)

B. Derivation of Eq. (15)

Here, we derive the expression for the partition function given in Eq. (15) of the main text. We start from the
expression given in (S-23)

ZT (t) = tN
2/2
∑
κ

t|κ| , (S-37)
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where we recall that |κ| =
∑N
i=1 κi with κi ≥ κi+1. Thus one can interpret ZT (t) in Eq. (S-37) as the generating

function of a counting problem:

ZT (t) = tN
2/2

N∑
M=0

p
(N)
M tM , (S-38)

where p(N)
M denotes the number of partitions of a positive integerM ≡ |κ| into at most N parts. We find its generating

function in Ref. [1]

N∑
M=0

p
(N)
M tM =

N∏
i=1

1

1− ti
. (S-39)

Substituting this result in Eq. (S-38) gives the partition function

ZT = tN
2/2

N∏
i=1

1

1− ti
. (S-40)

Making further a change of variable t = e−τ with τ = β~ω, we get

ZT =
N∏
i=1

e−
τ(i−1)

2

2 sinh τi
2

, where τ = β~ω . (S-41)

This gives the result in Eq. (15) of the main text.

C. Derivation of Eqs. (16) and (17)

We compute the first two moments of I by expanding Q̃T (p) in Eq. (S-35) up to O(p2) around p = 0. For this
purpose, we substituted v from Eq. (S-34) in the expression of t′ given in Eq. (S-35) and expanded t′ up to O(p2).
For the partition function ZT (t), we use the expression in Eq. (S-40). After some straightforward algebra, we get

Q̃T (p) = 1− p t

α2

1

ZT
∂

∂t
ZT +

p2

2α2

1

ZT

(
t2
∂2

∂t2
ZT +

2t

1− t2
∂

∂t
ZT
)

+O(p3) =

= 1− p 〈I〉T +
p2

2

〈
I2
〉
T

+O(p3) .

Comparing powers of p on both sides, we get the mean and the variance as

〈I〉T = − 1

α2~ω
∂β logZT , (S-42)

VarT (I) =
〈
I2
〉
β
− 〈I〉2β =

1

(α2~ω)2
∂2
β logZT −

1

α4~ω
1 + t2

1− t2
∂β logZT . (S-43)

Using the expression in Eq. (S-41), we get

logZT = −~ωβN(N − 1)

4
−

N∑
k=1

log

(
2 sinh

~ωβ
2
k

)
. (S-44)

Inserting this result in Eqs. (S-42) and (S-43) we obtain

〈I〉T =
N(N − 1)

4α2
+

1

2α2

N∑
k=1

k coth
τk

2
, (S-45)

VarT (I) =
1

2α4

N∑
k=1

k2

sinh2 τk
2

+
coth τ

α2
〈I〉T , (S-46)

where τ = β~ω. These expressions for the mean and the variance are exact for all N and also for all temperature
T = 1/β. This completes the derivation of Eqs. (16) and (17) of the main text.
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D. Derivation of Eqs. (18) and (19)

We first analyse Eq. (S-45) for the mean of I in the large N limit, both in the quantum (T ∼ ~ω) and in the
thermal regime, T ∼ N~ω.

Quantum regime. We first set u = T/(~ω) = 1/τ and rewrite Eq. (S-45) as

〈I〉T =
N(N − 1)

4α2
+

1

2α2

N∑
k=1

k

(
coth

k

2u
− 1 + 1

)
(S-47)

=
N2

2α2
+

1

2α2

N∑
k=1

k

(
coth

k

2u
− 1

)
. (S-48)

In the large N limit, the discrete sum over k converges to a constant (i.e., independent of N) and to leading order in
the large N we find

〈I〉T =
N2

2α2
+O(1)→ N2

α2
Fq

(
T

~ω

)
, where Fq(u) =

1

2
. (S-49)

This gives the result in the first line of Eq. (18) of the main text.
Thermal regime. In this regime, we set z = T/(N~ω) in Eq. (S-45), or equivalently τ = 1/(Nz). In the large N

limit, the discrete sum can be replaced by a continuous integral using Euler-Maclaurin summation formula

N∑
k=1

k coth

(
k

2Nz

)
= N2

∫ 1

0

dxx coth
x

2z
+O(N) . (S-50)

By performing this integral explicitly in terms of the dilogarithm function Li2(x) =
∑∞
k=1 x

k/k2, we obtain to leading
order for large N

〈I〉T =
N2

α2
Fth(z) +O(N) , where Fth(z) = −z2Li2(1− e1/z) . (S-51)

Thus we get the second line of Eq. (18) of the main text.

E. Derivation of Eqs. (20)-(22)

We now analyse Eq. (S-46) for the variance of I in the large N limit, respectively in the quantum (T ∼ ~ω) and in
the thermal regime, T ∼ N~ω.

Quantum regime. We set u = T/(~ω) = 1/τ in Eq. (S-46) and take the large N limit. In this case, the first term
is of O(1) since the sum

∑N
k=1 k

2/ sinh2(k/(2u)) is convergent. Furthermore, in this regime 〈I〉T ∼ N2/(2α2). Hence
to leading order for large N , we get

Var(I)T =
N2

2α4
Vq

(
T

~ω

)
+O(N) , where Vq(u) = coth(1/u) . (S-52)

This gives the first line of Eqs. (20) and (21) of the main text.
Thermal regime. In this regime, we set z = T/(N~ω) in Eq. (S-46), or equivalently τ = 1/(Nz). In the large N

limit, the discrete sum can be replaced by a continuous integral using Euler-Maclaurin summation formula

N∑
k=1

k2

sinh2
(

k
2Nz

) = N3

∫ 1

0

dx
x2

sinh2
(

x
2Nz

) +O(N2) . (S-53)

In the second term of Eq. (S-46), we have 〈I〉T ≈ (N2/α2)Fth(z) from Eq. (S-51). Moreover, for large N ,
coth(1/(Nz)) ≈ N z for z 6= 0 fixed. Thus both terms in Eq. (S-46) are of O(N3) for large N . Collecting
terms of O(N3) together, we get

Var(I)T =
N3

2α4
Vth

(
T

N~ω

)
, Vth(z) = z

(
6Fth(z)− 1− coth

(
1

z

))
, (S-54)

where Fth(z) is given in Eq. (S-51). This completes the derivation of the second line of Eqs. (20) and (22) of the
main text.
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F. Rate functions of Eqs. (25) and (27)

We now inspect the full distribution function QT (I) given by the Bromwich integral:

QT (I) =
1

2πi

∫
Γ

dp ep I+ln Q̃T (p) , (S-55)

with the Bromwich contour Γ in the complex p-plane running to the right of all singularities of the integrand and

ln Q̃T (p) = −N(N − 1)

4
(τ ′ − τ)−

N∑
k=1

ln
sinh(kτ

′

2 )

sinh(kτ2 )
, (S-56)

where τ = ~ωβ, τ ′ = ~ωβ′. In addition, τ ′ and τ are related by Eq. (S-36) that reads

τ ′ = cosh−1
(

cosh τ +
p

α2
sinh τ

)
. (S-57)

Quantum regime. We set u = T/(~ω) = 1/τ and take the large N limit in Eq. (S-56). We first rewrite

ln
sinh(kτ

′

2 )

sinh(kτ2 )
=
k

2
(τ ′ − τ) + ln

(
1− e−kτ ′

1− e−kτ

)
. (S-58)

Then the sum in the second term is given by

N∑
k=1

ln
sinh(kτ

′

2 )

sinh(kτ2 )
=
N(N + 1)

4
(τ ′ − τ) +

N∑
k=1

ln

(
1− e−kτ ′

1− e−kτ

)
. (S-59)

The second term in Eq. (S-59) is O(1) since the sum is convergent. Using Eq. (S-59) in Eq. (S-56) yields

ln Q̃T (p) = −N
2

2
(τ ′ − τ) +O(1) . (S-60)

Using Eq. (S-57) for τ ′ we get

ln Q̃T (p) =
N2

2

[
1

u
− cosh−1

(
p

α2
sinh

1

u
+ cosh

1

u

)]
+O(1) . (S-61)

Substituting this result (S-61) in Eq. (S-55) and rescaling I = y N2 we get

QT (I) =
1

2πi

∫
Γ

dp eN
2 f(p) , (S-62)

where

f(p) = y p+
1

2

[
1

u
− cosh−1

(
p

α2
sinh

1

u
+ cosh

1

u

)]
, where y =

I

N2
. (S-63)

For large N , we evaluate the integral in Eq. (S-63) by saddle point method. The saddle points are found from
f ′(p) = 0, which has two solutions

p± =
α2

sinh 1/u

(
− cosh 1/u±

√
1 + U2

)
, where U =

sinh(1/u)

2yα2
. (S-64)

Since the Bromwich contour Γ can be deformed to pass through the saddle p+, we get to leading order for large N

QT (I) ∼ e−N
2φq( I

N2 ;u) , (S-65)

with the rate function φq(y;u) = −f(p+) given explicitly by

φq (y;u) =
sinh−1U − u−1

2
−
√

1 + U2 −
√

1 + 4y2α4U2

2U
, where U =

sinh(1/u)

2yα2
. (S-66)

This then provides the Eq. (25) of the main text.
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Thermal regime. We set z = T/(N~ω) = 1/(Nτ). We start from the Bromwich integral (S-55) and rescale the
integration variable p = q/N so that

QT (I) =
1

2πiN

∫
Γ

dq eN(qy+ 1
N ln Q̃T (p=q/N)) , where y =

I

N2
. (S-67)

With the help of Eq. (S-59) we rewrite the integrand:

ln Q̃T (p) = −N
2

2
(τ ′ − τ)−

N∑
k=1

ln

(
1− e−kτ ′

1− e−kτ

)
. (S-68)

As a first step we expand the formula (S-57) for τ ′ at p = q
N and τ = 1

zN :

τ ′ =
v

zN
+O(N−2) , where v =

√
1 +

2qz

α2
, (S-69)

and so the first term of Eq. (S-68) reads

−N
2

2
(τ ′ − τ) = N

1− v
2z

+O(1) . (S-70)

The second term in Eq. (S-68) is computed using the Euler-Maclaurin summation formula

N∑
k=1

ln

(
1− e−kτ ′

1− e−kτ

)
= N

∫ 1

0

dκ ln

(
1− e−κvz
1− e−κz

)
+O(1)

= N

[∫ 1

0

dκ ln
(
1− e−κvz

)
−
∫ 1

0

dκ ln
(
1− e−κz

)]
+O(1) , (S-71)

where we have rescaled the integration variable by k → Nκ, plugged in Eq. (S-69) and τ = 1
zN . Both integrals are

of the type
∫ 1

0
dx ln (1− e−ax) = 1

a

(
Li2(e−a)− π2

6

)
with a = v/z and a = 1/z respectively. Thus the second term of

Eq. (S-68) reads

N∑
k=1

ln

(
1− e−kτ ′

1− e−kτ

)
= N

[
z

v

(
Li2(e−v/z)− π2

6

)
− z

(
Li2(e−1/z)− π2

6

)]
+O(1) . (S-72)

Finally, we collect the results in Eqs. (S-70) and (S-72), plug them into (S-68) and compute the integrand of Eq. (S-67):

qy +
1

N
ln Q̃T (p = q/N) = qy +

1− v
2z

+
z

v

(
π2

6
− Li2(e−v/z)

)
− z

(
π2

6
− Li2(e−1/z)

)
+O(1/N) , (S-73)

where we recall that v =
√

1 + 2qz/α2. We now turn to calculating the integral (S-67). It is actually convenient to
make a change of variable from q to v in the integration in Eq. (S-67). With this change of variable, this integral
reads

QT (I) =
α2

2πiNz

∫
Γ′
dv v eNf(v) , (S-74)

where Γ′ is the deformed contour of Γ in the complex v-plane. The function f(v) is given explicitly by

f(v) =
yα2

2z
(v2 − 1) +

1− v
2z

+
z

v

(
π2

6
− Li2(e−v/z)

)
− z

(
π2

6
− Li2(e−1/z)

)
, (S-75)

where we have used q = α2(v−1)/(2z). We recall that Li2(x) =
∑∞
k=1 x

k/k2 is the dilogarithm function. The integral
in (S-75) can be evaluated, for large N , using saddle-point method. The saddle point equation f ′(v∗) = 0 gives

−yv
3
∗α

2

z2
+

v2
∗

2z2
+
π2

6
+
v∗
z

ln(1− e−v∗/z) = Li2(e−v∗/z) . (S-76)
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This formula simplifies considerably if we use the identity

Li2(e−v/z) =
v2

2z2
+
π2

6
+
v

z
ln(1− e−v/z) + Li2(1− ev/z) , (S-77)

which can be derived using Euler’s reflection formula. The Eq. (S-76) then simplifies to

Li2
(

1− ev∗/z
)

= −yv
3
∗α

2

z2
. (S-78)

Using Fth(z) = −z2 Li2(1− e1/z) from Eq. (S-51), we can rewrite the saddle point equation as

Fth

(
z

v∗

)
= yv∗α

2 . (S-79)

For y > 0 and z > 0, Eq. (S-79) admits a real positive solution v∗ > 0. Thus the saddle point solution finally reads

QT (I) ∼ e−Nφth(y;z) , (S-80)

with φth(y; z) = −f(v∗):

φth(y; z) =
yα2

2z
(v2
∗ − 1) +

1− v∗
2z

+
z

v∗

(
π2

6
− Li2(e−v∗/z)

)
− z

(
π2

6
− Li2(e−1/z)

)
, (S-81)

where v∗ is determined implicitly from Eq. (S-79), given y and z. Using the identity in Eq. (S-77), we can express
the thermal rate function as

φth(y; z) =
1− v∗ + yα2(v2

∗ − 1)

2z
+ log

(
sinh 1

2z

sinh v∗
2z

)
+
v∗Fth( zv∗ )− Fth(z)

z
, (S-82)

which results in Eq. (27) of the main text.
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