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Exact spectral densities of complex noise-plus-structure random matrices
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We use supersymmetry to calculate exact spectral densities for a class of complex random matrix models
having the form M = S + LXR, where X is a random noise part X, and S,L,R are fixed structure parts. This is
a certain version of the “external field” random matrix models. We find twofold integral formulas for arbitrary
structural matrices. We investigate some special cases in detail and carry out numerical simulations. The presence
or absence of a normality condition on S leads to a qualitatively different behavior of the eigenvalue densities.
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I. NOISE-PLUS-STRUCTURE RANDOM MATRICES

In the past 50 years, random matrix theory (RMT) has been
established as an impressively versatile approach [1] to study-
ing complex systems. In particular, applications including
large data structures [2], machine learning algorithms [3], and
telecommunications [4] have arisen recently. It is a common
problem in these and many other areas to infer a signal or
information from noisy data. In this work, we study a type
of RMT noise-plus-structure model suitable for this type of
inference tasks. More specifically, let M be a matrix of the
form

M = S + LXR, (1)

where S is a fixed matrix and L,R > 0 are diagonal positive-
definite covariance matrices. The matrix X is the source
of noise drawn typically from a multidimensional Gaussian
ensemble. Equation (1) thus comprises the simplest model
combining both randomness (X) and structure (S,L,R).
The matrix S is called a source and is interpreted as the
signal-information matrix of the system under study. We
add a structured noise LXR as every real-world datum is
contaminated, and only the resulting matrix M is attainable
by experiment. The matrices L,R encode an anisotropic (or
correlated) source of randomness—a single element of the
source matrix Sij is perturbed by a noisy term LiiRjjXij , i.e.,
with variance σ 2

ij = (LiiRjj )2. The absence of any structure
means setting S = 0 and L = R = 1, which reduces Eq. (1)
to standard RMT models of pure randomness.

There are at least two strategies for studying the model (1)—
we look at either the eigenvalues or the singular values of M

(equivalently at the eigenvalues of M†M). The first approach
is limited to square matrices, whereas the second route is the
main idea behind the principal component analysis in which,
in general, rectangular data matrices M are investigated. In this
work, we focus on the first approach and study the statistics
of the eigenvalues. It is well known that the symmetries of M

constrain the position of its eigenvalues. Here, however, we
drop any symmetry constraints and focus on the case in which
eigenvalues are spread over the whole complex plane. In what
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follows, we discuss a couple of instances that can be realized
with the model (1) and which are interesting from a practical
as well as from a theoretical perspective.

In finance, one studies the markets to make educated
guesses about their future behavior, including the search for
possibly profitable correlations. Toward that end, one typically
considers N assets in T time slices that may be ordered in a
rectangular N × T matrix M . We set S = 0 and interpret L,R

as noise correlation matrices in both time and space. Because
M is rectangular, the spectral density of MT M is studied, and
thus we arrive at the doubly correlated Wishart model [5].
As a second example, in wireless telecommunication Eq. (1)
arises in multiple-input–multiple-output (MIMO) systems
as a complex Nr × Nt transmission matrix M between Nt

transmitters and Nr receivers [6].
As a physics application, we consider a Hermitian Hamilto-

nian M that models an ensemble of charged spinless particles
interacting with a strong external magnetic field [7]. In this
instance, we set S = e−τH0, LR = √

1 − e−2τ , and both H0

and X are random matrices drawn from the Gaussian unitary
ensemble (GUE). The parameter τ is proportional to the
applied magnetic field. For moderate fields, a different random
matrix model of (1) applies—a transition between a Gaussian
orthogonal ensemble (GOE) and a GUE happens due to the
breaking of time-reversal invariance. In this regime, we set
LR = iα while the random matrices S and X are symmetric,
S = ST , and antisymmetric, X = −XT , respectively. Even
though we drop the positivity condition of L,R and consider a
random matrix S, the model described is still of the form (1).
As the parameter α that is proportional to the field varies
between 0 and 1, a transition between GOE and GUE takes
place.

Independently, the rich mathematical structure of models
of the type (1) has attracted a lot of attention in its own
right. These ensembles are known in the RMT community as
“external source models”. So far they were mostly considered
for L = R = 1 and Hermitian X [8–11]. These models also
have a natural interpretation in terms of Dyson’s Brownian
motion for the stochastic evolution in time τ , when we set
LR = √

τ and view S as the initial matrix [12,13].
Although all of the above examples contain either complex

or real matrices M with a purely real spectrum, there are
situations in which symmetry constraints are not present and
the spectrum spreads over the whole complex plane. One of the
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main tenets of quantum mechanics for closed systems is the
hermiticity of the Hamiltonian, while dropping it is an oft-used
effective way to describe open systems, i.e., to account for the
environment. As a consequence, complex energies of the type
E = ε − i� arise that correspond to resonant states. Such an
energy eigenstate |φE(t)〉 = e−iEt |φE(0)〉 not only oscillates
with a frequency ε, but it also decays with a characteristic
time 1/�. Random matrix models of this type were used for
studying quantum chaotic scattering in open cavities [14]. In
this case, the matrix S is drawn from the GUE, LR = −iπ , and
X = W †W models a random interaction between the cavity
and its surroundings, where W is drawn from a complex Girko-
Ginibre ensemble.

As a second application of non-Hermitian matrices, we
mention efforts to construct mathematical models of neuronal
networks [15–17]. Here, M represents the neuronal adjacency
matrix, and we begin by setting S = 0, L = R = 1. In this
context, however, an additional constraint is needed—each
matrix row must be either purely negative or purely positive,
which reflects Dale’s law of neuronal behavior. Moreover, a
recent paper [18] argued that also the S, L, and R matrices in
the model (1) might be of significance.

In the sequel, we consider matrices X drawn from the Girko-
Ginibre ensemble (i.e., a matrix with complex Gaussians
random entries) as well as various types of structural matrices
S, L, and R. In Sec. II we compute an exact formula for the
spectral density of M and arbitrary matrices S, L, and R.
In Sec. III we investigate particular cases: a normal matrix
S and arbitrary matrices L,R, a vanishing source S = 0 and
trivial L = R = 1, and a rank-1 non-normal source S with
L = R = 1. Eventually, we comment on the spectral formula
for a related problem of eigenvalues of M−1. We summarize
and conclude in Sec. IV.

II. SPECTRAL DENSITY OF M

We now describe the model (1) in greater detail. Let X

be an N × N matrix drawn from a complex Girko-Ginibre
ensemble,

P (X)dX = C−1 exp(−μTrX†X)dX, (2)

where μ is an (inverse) variance parameter and C = (π/μ)N
2

is
the normalization constant. The flat measure over the matrices
X is denoted dX. All matrices S, L, and R are N × N , with
L,R being positive-definite and diagonal. The source matrix
S is in the most general form given by S = D + T , where D

is diagonal and T is strictly upper triangular. These reduced
forms are not restrictive because the spectrum of M is unitarily
invariant. In particular, the Schur decomposition of the source
matrix reads S = U †(D + T )U for a particular unitary matrix
U . When T = 0, the source matrix is called normal, otherwise
it is non-normal.

A basic statistical quantity characterizing the model (1) is
the spectral density,

ρ(z,z̄) = 1

N

〈
N∑

i=1

δ(2)(z − mi)

〉
P

, (3)

depending on the complex variable z. The mi are the eigenval-
ues of M . We use the two-dimensional Dirac δ function due

to complexity of the spectrum; the average is taken over the
random measure (2).

Many authors have studied the spectral density (3)
in the large-N limit [19–21]. In particular, convenient
quaternionic-hermitization methods [22,23] were developed
to complete this task. For L = R = 1 and a general normal
source S, spectral density in the large-N limit was found in
Ref. [24], whereas the L,R �= 1 generalization was recently
studied in Ref. [18]. For finite matrix size, a formula for the
spectral density was calculated in Ref. [25] for L = R = 1
and a normal source term S only. In this work, we address the
cases L,R �= 1 as well as non-normal S.

To find the spectral density, we introduce as a generating
function the averaged ratio of determinants,

RL,R(Z,V ) =
〈

det(Z − M)

det(V − M)

〉
P

, (4)

with the 2N × 2N block matrices

M =
(

0 M

M† 0

)
, (5)

Z =
(

L2w z1N

z̄1N −R2w̄

)
, V =

(
L2u v1N

v̄1N −R2ū

)
, (6)

where 1N denotes the N × N unit matrix. We notice that the
matrices Z and V depend on the complex variables z, u, v,
and w. For u = w = 0, we recover the special case

RL,R(z,v) =
〈

det[(z − M)(z̄ − M†)]

det[(v − M)(v̄ − M†)]

〉
P

. (7)

Although the variables u,w have an interesting interpretation
in terms of the eigenvectors [26], we only use their regulatory
properties—as long as u,w �= 0, the ratio is finite for all
complex v. Importantly, the spectral density is generated by
taking proper derivatives of the averaged ratio equation,

ρ(z,z̄) = − 1

Nπ
lim

w,u → 0

∂

∂z̄
lim

v → z

∂

∂v
RL,R(Z,V ), (8)

introduced in Ref. [27] for L = R = 1.
We use the supersymmetry method to calculate the gen-

erating function RL,R . Although the basic steps are by now
standard, the details are rather involved in the present study.
We refer the interested reader to Appendix A. We eventually
arrive at the twofold integral representation

RL,R = 4i

π

∫ ∞

−∞
dg

∫ ∞

0
df S(f,g−), (9)

with g− = g − iε and the integrand

S(f,g−) = e−μ(g2
−+f 2+|w|2−|u|2)I0(2μf |w|)K0(2iμ|u|g−)

× g−f G[γ1 + (μ − γ2)(μ − γ3) + γ4], (10)

depending on the modified Bessel functions I0 and K0 of the
first and second type, respectively. The functions G and γi are
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equal to

G = det(−f 21N − �z�z)

det(g2−1N − �v�v)
,

γ1 = f 2g2
−Tr[PvQz]Tr[P′

vQ′
z],

γ2 = Tr[�z�vPvQz], γ3 = Tr[�v�zQzPv],

γ4 = f 2Tr[�vQ′
z�vPvQzPv] + g2

−Tr[�zP′
v�zQzPvQz],

where we defined

�x = R−2(x̄1N − S†), �x = L−2(x1N − S),

Pv = (g2
−1N − �v�v)−1, P′

v = (g2
−1N − �v�v)−1,

Qz = (−f 21N − �z�z)
−1, Q′

z = (−f 21N − �z�z)
−1.

III. PARTICULAR CASES

So far, the result (9) for the generating function is exact
for any matrix dimension N and is valid for any structural
matrices L, R, and S. Although the integrand (10) is, in general,
rather complicated, the integral can be worked out explicitly
for certain subclasses of L, R, and S. We are particularly
interested in the following three cases:

(i) Vanishing source S = 0 and trivial L = R = 1.
(ii) Normal source S and variance matrices L,R arbitrary.
(iii) Non-normal source S of rank 1 and trivial variance

matrices L = R = 1.
We compute these cases and discuss them in the sequel.

A. Vanishing source S = 0 and L = R = 1

We consider the case S = 0 and L = R = 1 in which a
simple spectral density formula is known from the work of
Ginibre [28]. The generating function (9) reads

RG = N (iNjN − iN−1jN+1) − μiN−1jN+1(v̄z + z̄v)

+ μ(iN−1jN+2|v|2 + iN−2jN+1|z|2), (11)

where the building blocks im (fermionic type) and jm (bosonic
type) read

im = e−μ|w|2

m!

∫ ∞

0
dρ e−ρI0(2

√
μρ|w|)(ρ + μ|z|2)m, (12)

jm = (m − 1)!

2πi

∮
�

dp

∞∑
k=0

Uk+1,1(μ|u|2)pk

(p + μ|v|2)m
, (13)

where � is a contour encircling −μ|v|2 counterclockwise and
Ua,b(x) = U (a,b,x) is the Tricomi confluent hypergeometric
function. The contour integral reformulation of the bosonic
block jm is derived in Appendix B.

Before proceeding, we cross-check the generating func-
tion (11) with similar calculations carried out for the chiral
Gaussian unitary ensemble. Toward that end, we set z = v = 0,
and the generating function reduces to

RchGUE =
〈

det(|w|2 + XX†)

det(|u|2 + XX†)

〉
P

. (14)

We also set μ = N and arrive at

RchGUE = N (iNjN − iN−1jN+1).

By Eqs. (12) and (13) we find the fermionic and bosonic
building blocks

im = Lm(−N |w|2), jm = (m − 1)!Um,1(N |u|2),

which reproduces the results of Ref. [29].
In the present study, we are interested in the complementary

limit, i.e., we set u,w → 0 and look at z,v �= 0. Toward that
end, we use the identity

k!Uk+1,1(μ|u|2) = eμ|u|2�(0,μ|u|2)Lk(−μ|u|2)

+ L̃k(−μ|u|2),

which when applied to the bosonic block (13) induces a
splitting into two parts,

jm(v,u) = j (sing)
m (v,u) + j (reg)

m (v,u). (15)

Because the ratio RG is linear in jm, we find the same type
of separation RG = R(sing)

G + R(reg)
G . We apply the operator

∂
∂z̄

lim
v→z

∂
∂v

to this ratio, we find by symbolic calculation that

∂
∂z̄

lim
v→z

∂
∂v
R(sing)

G = 0, and so the spectral density given by

Eq. (8) simplifies

− Nπρ = lim
w,u → 0

∂

∂z̄
lim

v → z

∂

∂v
RG

= lim
w,u → 0

∂

∂z̄
lim

v → z

∂

∂v
R(reg)

G . (16)

It depends, therefore, only on j
(reg)
m (v,u). We exchange the

limits in Eq. (16) and define the modified ratio R̃G:

R̃G = lim
w,u→0

R(reg)
G = RG[im → ĩm,jm → j̃m], (17)

where the blocks are given by ĩm(z) = lim
w→0

im(z,w) and

j̃m(v) = lim
u→0

j
(reg)
m (v,u). Although RG �= R̃G, the spectral

density ρ = ρ̃ agrees exactly,

ρ̃(z,z̄) = − 1

Nπ

∂

∂z̄
lim

v → z

∂

∂v
R̃G. (18)

The modified building blocks read

ĩm = 1

m!

∫ ∞

0
dρ e−ρ(ρ + μ|z|2)m, (19)

j̃m = − (m − 1)!

2πi

∮
�

dp
ep[γ + �(0,p) + ln p]

(p + μ|v|2)m
, (20)

where we used the identity

∞∑
m=0

1

m!
L̃m(0)pm = −ep[γ + �(0,p) + ln p] (21)

for the modified Laguerre polynomials L̃m with γ denoting
the Euler constant. This identity follows from the fact that
L̃m(0) = −∑m

k=1
1
k

are the (negative) harmonic numbers.
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Directly from Eqs. (19) and (20) we derive the iterative
formulas

ĩm = ĩm−1 + (μ|z|2)m(m!)−1,

j̃m = j̃m+1 − (β − 1)!(μ|v|2)−me−μ|v|2 ĩm−1(v),

and we use them to reexpress the generating function

R̃G = μĩN−1j̃N+1|v − z|2

+ e−μ|v|2

|v|2N
[ĩN−1(z)|v|2N − ĩN−1(v)|z|2N ], (22)

where we have written out explicitly the argument of ĩ to
avoid confusion. At this point, we observe that the generating
function vanishes for z = v, R̃G = 0. It is thus evident that
the derivative operator of Eq. (18) only produces contributions
due to the second term. Lastly, by using ∂z̄ĩm = μzĩm−1 and
∂vj̃m = −μv̄j̃m+1, we recover the well-known formula

ρG = μ

Nπ
e−μ|z|2

N−1∑
k=0

(μ|z|2)k

k!
(23)

for the spectral density, which often appears for μ = N .

B. Normal S and arbitrary L,R

In this case, all structure matrices L, R, and S are diagonal,

S = diag(s1, . . . ,s1︸ ︷︷ ︸
u1

, s2, . . . ,s2︸ ︷︷ ︸
u2

, . . . ,sx︸ ︷︷ ︸
...ux

),

L = diag(l1, . . . ,l1︸ ︷︷ ︸
v1

, l2, . . . ,l2︸ ︷︷ ︸
v2

, . . . ,ly︸ ︷︷ ︸
...vy

),

R = diag(r1, . . . ,r1︸ ︷︷ ︸
w1

, r2, . . . ,r2︸ ︷︷ ︸
w2

, . . . ,rz︸ ︷︷ ︸
...wz

),

with three sets of multiplicities ui,vi,wi , which should not be
confused with the above employed complex variables u,v,w.
Here, x,y,z are the numbers of different entries in the structure
matrices L, R, and S, respectively, thereby defining the sizes
of the sets. The multiplicities in each set add up to N . Because
the integrand (10) only depends on the products (�x)ii(�y)ii ,
we introduce a structured source matrix of the form

αxy = �x�y = (LR)−2(x̄1N − S†)(y1N − S), (24)

which depends on all three matrices L, R, and S. It is
accompanied by a merged multiplicity vector �n. We define it by
the following construction: we first form the multiplicity vec-
tors �u = (u1, . . . ,ux), �v = (v1, . . . ,vy), and �w = (w1, . . . ,wz)
corresponding to the matrices S, L, and R, respectively. The
vector �u is graphically represented by a column of N points,
which are ordered in x groups according to the multiplicities
ui . The points within each of these x groups are given the same
(arbitrary) color, which is only used to distinguish the different
groups. We refer to the first and last points in each group as
the boundary. The vectors �v, �w are represented accordingly.
The multiplicity vector �n = (n1, . . . ,nk) is then constructed
as a vector that has a boundary whenever at least one of
the vectors �u, �v, and �w has one. We illustrate this by the
example in Fig. 1 in which the vector �u is represented by

u v w n

FIG. 1. Construction of the multiplicity vector �n =
(1,1,2,1,2,2,2) from �u = (5,2,4), �v = (2,5,4), and �w = (1,3,5,2).
The points depict groups of sizes determined by the corresponding
multiplicities. Horizontal lines (both solid and dashed) are drawn
along the boundaries of the groups of any of the vectors �u, �v, and �w,
visualizing the construction of the merged vector �n.

N = 11 points ordered in x = 3 groups with multiplicities
u1 = 5, u2 = 2, and u3 = 4 with 5 + 2 + 4 = 11. As seen, the
multiplicities for the other two vectors differ. We juxtapose
the point sets of all three multiplicity vectors along with the
constructed �n. From now on, we only use the merged vector �n.
We introduce the dimension d(�n) of the vector �n as the number
of differing groups, e.g., d(�n) = 7 in the above example.
We also introduce the length |�n| = ∑d(�n)

i=1 ni . The generating
function (9) can then be cast into the form

1

C
RL,R = i�nj�n −

d(�n)∑
i=1

μ

ni

(
αi

zv + αi
vz + N

μ

)
i�n−�ei

j�n+�ei

+
d(�n)∑

i,j=1

μ2αi
zv

ninj

[(
αj

vz − αi
vz

)
i�n−�ei− �ej

j�n+�ei+ �ej

]

+
d(�n)∑

i,j=1

μ

nj

[
αi

vvi�n− �ej
j�n+�ei+ �ej

+ αi
zzi�n−�ei− �ej

j�n+ �ej

]
,

(25)

where αi
xy is the ith element of the diagonal matrix (24), C =∏d(�n)

i=1 ni , and the �ei’s are k-dimensional unit vectors in the
ith direction. These vectors �ei are used to conveniently add
or subtract a single source from the vector �n. Similarly to the
Ginibre case considered in Sec. III A, the result (25) contains
fermionic and bosonic building blocks. The former is given by

i �m = e−μ|w|2∏d( �m)
i=1 mi!

∫ ∞

0
dρ e−ρI0(2

√
μρ|w|)

d( �m)∏
i=1

(
ρ + μαi

zz

)mi
,

(26)

where we set i �m = 0 if some element of the multiplicity
vector �m is negative. The bosonic counterpart
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reads

j �m(v,u) = 2iμ

π

d( �m)∏
i=1

(mi − 1)!

(−μ)mi
eμ|u|2

×
∫ ∞

−∞
dg g−e−μg2

−K0(2iμ|u|g−)

×
d( �m)∏
i=1

(
g2

−−αi
vv

)−mi
. (27)

Analogously to formula (13), we notice that the bosonic
building block is expressed as the contour integral

j �m(v,u) =
∏d( �m)

i=1 (mi − 1)!

2πi

∮
�s

dp

∞∑
k=0

Uk+1,1(μ|u|2)pk∏d( �m)
i=1

(
p + μαi

vv

)mi
,

(28)

where the contour �s encircles all sources −μαi
vv coun-

terclockwise. Details of the calculation are provided in
Appendix B.

We follow the discussion in Sec. III A to address the limit
u,w → 0. As the procedure is analogous, we can immediately
write down the modified generating function

R̃L,R = RL,R[i �m(z,w) → ĩ �m(z),j �m(v,u) → j̃ �m(v)], (29)

with new building blocks ĩ �m(z) = limw→0 i �m(z,w) and
j̃ �m(v) = limu→0 j

(reg)
�m (v,u). We stress that this procedure is

not an approximation—although we have R̃L,R �= RL,R , the
spectral densities obtained by Eqs. (8) and (18) agree exactly
ρ̃ = ρ. The modified building blocks are given by

ĩ �m = 1∏d( �m)
i=1 mi!

∫ ∞

0
dρ e−ρ

d( �m)∏
i=1

(
ρ + μαi

zz

)mi
,

j̃ �m = −
∏d( �m)

i=1 (mi − 1)!

2πi

∮
�s

dp
ep[γ + �(0,p) + ln p]∏d( �m)

i=1

(
p + μαi

vv

)mi
,

(30)

where we used the identity (21).
The final formula for the spectral density in the case of a

normal source S and nontrivial L,R then reads

ρ̃ = − 1

Nπ

∂

∂z̄
lim

V → Z

∂

∂v
R̃L,R(z,v), (31)

together with the definitions (25), (29), and (30). We demon-
strate the utility of our analytical result in Fig. 2 by comparing
it with numerical simulations. Adding (structured) noise LXR

produces an overall eigenvalue spreading with anisotropic
features reflecting the L,R covariance matrices. The density
is concentrated around the initial eigenvalues of S and varies
smoothly as we change the noise level μ, i.e., the inverse
variance of the ensemble (2).

C. Non-normal rank-1 S and L = R = 1

A major reason to study models of the type (1) is the issue
of spectral stability. How far do the eigenvalues of S + Y

spread around the eigenvalues of S for a small perturbation Y ?
This is especially interesting for finite rank sources S where

FIG. 2. Spectral density according to Eq. (31) as insets along
two lines L1 and L2 in the complex plane, together with numerical
simulations. The structural matrices are S = diag(−1,0,1 + i), L =
diag(3/4,1), and R = diag(1,5/4,1) with multiplicity vectors of �u =
(2,1,3), �v = (2,4), and �w = (2,1,3).

extremal (or outlier) eigenvalues emerge from the eigenvalue
sea of the matrix Y . This phenomenon was studied in a
Hermitian [30–32] as well as a non-Hermitian [33–35] setting.
Here, we examine how the normal or non-normal character of
the source influences the eigenvalue distribution. We consider
a rank-1 source of the form

S = α|n〉〈m| (32)

for complex parameter α and bras (kets) 〈m| (|n〉) denoting
the canonical matrix basis—the source matrix S has one
nonzero element α placed on the off-diagonal. For the sake of
simplicity, we choose the trivial variance structure L = R = 1.
After a fair amount of algebra, we find the result

RNN = R0 + |α|2R1 + |α|4R2 + |α|6R3 + |α|8R4 (33)

for the generating function. The formulas for the Ri’s are
lengthy and are thus shifted into Appendix C. Although the
terms in Eq. (33) turn out to lack structure, they are still
assembled from the bosonic and fermionic building blocks
similar to Eq. (26),

ik,l(z,w) = (−1)k

μk+2l+1
e−μ|w|2

∫ ∞

0
dρ e−ρI0(2

√
μρ|w|)

×(ρ + μ|z|2)k(ρ + μk+
z )l(ρ + μk−

z )l , (34)

and Eq. (27),

jq,r (v,u) = 2

iπ
eμ|u|2

∫ ∞

−∞
dg g−e−μg2

−K0(2iμ|u|g−)

×(g2
− − |v|2)−q(g2

− − k+
v )−r (g2

− − k−
v )−r , (35)
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where k±
x = 1

2 (|α|2 + 2|x|2 ± |α|
√

4|x|2 + |α|2). By investi-
gating the terms in each of the Ri’s, we find the conditions
l = −1,0,1, k � 0 and q + r � 1, r = 1,2,3, for the indices
of ik,l and jq,r , respectively. We employ the same steps as in
Sec. III B, obtain the generating function R̃NN, and construct
the modified fermionic block,

ĩk,0 = (−1)kk!

μk+1
(ĩG)k, (36)

ĩk,1 = ĩk+2,0 − |α|2(ĩk+1,0 + |z|2 ĩk,0), (37)

ĩk,−1 = (−1)kk!

(k+
z − k−

z )μk

k∑
l=0

(μ|z|2)l

l!

× [U1,1+l−k(μk−
z ) − U1,1+l−k(μk+

z )], (38)

where ĩG is the Ginibre block of Eq. (19) and k � 0. We
relegate the derivation of Eq. (38) to Appendix B. The bosonic
block reads

j̃q,r = − (−μ)q+2r−1

2πi

×
∮

�

dp ep ln p

(p + μ|v|2)q(p + μk−
v )r (p + μk+

v )r
, (39)

where q � 0, r � 1, and the contour � encircles both −μ|v|2
and −μk±

v . Lastly, we obtain the formulas for q = −1,−2,

j̃−1,2 = 1
2 (j̃0,2− + j̃0,2+ + |α|2j̃0,2), (40)

j̃−1,3 = 1
2 (j̃0,3− + j̃0,3+ + |α|2j̃0,3), (41)

j̃−2,3 = 1
4 [j̃0,3−− + 2j̃0,3+− + j̃0,3++ + |α|4j̃0,3

+ 2|α|2(j̃0,3+ + j̃0,3− )], (42)

where the subscripts ± indicate that the underlying multiplicity
vector �x = (q,r − 1,r) is applied with decrement to the source
at nk±

v .
Finally, we obtain the spectral density (3) analytically and

plot it in Fig. 3. To facilitate a comparison, we juxtapose it
with the analogous results for the case of a rank-1 normal
source S and for the Ginibre case (23). A non-normal source
S (third row in Fig. 3) does not produce, on average, outlier
eigenvalues in the spectrum, in contrast to the normal source S

(second row in Fig. 3), where we find an island around α = 10.
Instead, in the non-normal case we observe something like a
blowup of the spectral bulk. The first row in Fig. 3 is devoted
to the case of a vanishing source, S = 0. Near z = 0, both
the normal and the vanishing source produce similarly shaped
spectral densities—the only difference between these cases is
the presence or absence of the finite-rank island.

D. Spectrum of M−1

As a last application, we discuss how to infer somewhat
gratuitously the spectrum of (S + X)−1 from the results for
the spectrum of S + X. For simplicity, we deal with a normal
source S only and set L = R = 1. Toward that end, we define

0 5 10
–5

0

5

–2 2

0 5 10
–5

0

5

0 5 10

0 5 10
–5

0

5

–2 0 2

FIG. 3. Left-hand side: complex plane of eigenvalues, from top
to bottom for unperturbed S = 0 (Ginibre), normal perturbation S =
10|1〉〈1|, and non-normal perturbation S = 10|2〉〈1|. Right-hand side:
numerical simulations and analytical results for the spectral densities
ρG, ρN , and ρNN along the real axis line (dashed lines on the left-hand
side). Numerical simulations are for matrices of size N = 4, α = 10,
and we set μ = N .

a generating function R−1 for the inverse as

R−1(Z,V ) =
〈

det(Z − M−1)

det(V − M−1)

〉
P

= det Z

det V
R1,1

(
Z′,V ′),

(43)

and we relate it to the generating function (4) previously

considered. The matrices M−1 = ( 0 M−1

M†,−1 0
) and Z′,V ′ are

rearranged versions of the inverse matrices Z−1,V −1 of Eq. (6),

X′ =
(

(X−1)22 (X−1)21

(X−1)12 (X−1)11

)
, X = Z,V. (44)

We thus conclude that the whole calculation discussed in
Sec. III B can be repeated with only making the replacements
w → −wGzw, z → z̄Gzw, u → −uGvu, and v → v̄Gvu with
Gxy = (|x|2 + |y|2)−1. We again conduct the R → R̃ proce-
dure and eventually find that only the source matrix of Eq. (24)
is modified according to

αxy → (α−1)xy = αx−1y−1 = (x̄−11N − S†)(y−11N − S).

The modified ratio for the problem of finding the spectrum of
(S + X)−1 reads

R̃−1 =
( |z|2

|v|2
)|�n|

R̃1,1[αxy → (α−1)xy], (45)

where the generating function R̃1,1 is that of Eq. (29) and
the constituent fermionic and bosonic blocks (30) are affected
accordingly. In particular, we calculate the spectral density for
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FIG. 4. A numerical simulation (top histogram) along with
analytic spectral density plots of matrix (S + X)−1 along two straight
lines L1 (bottom-left plot) and L2 (bottom-right plot) for an external
source setup of S = (−2,2) with multiplicities �n = (4,2).

an inverse matrix X−1 as

ρG,−1 = μe
− μ

|z|2

Nπ |z|4
N−1∑
k=0

1

(k)!

(
μ

|z|2
)k

, (46)

obtained from Eq. (22). This formula was also found in a recent
work on the product of matrices [36].

In Fig. 4, the spectral density of (S + X)−1 is depicted as
calculated from the generating function (45) for the nonzero
external source S.

IV. CONCLUSIONS

We have calculated exact spectral densities for a class of
complex random matrix models of the form M = S + LXR

consisting of a noise part X and structure parts S,L,R.
We found twofold integral formulas for arbitrary structural
matrices. In greater detail, we investigated the case of a normal
source matrix S and arbitrary diagonal matrices L,R, which
are of particular interest. The resulting formulas are of a
remarkably succinct form. We confirmed our analytical results
by numerical simulations.

We showed how the presence or absence of the normality
condition for S leads to a qualitatively different behavior of
the eigenvalue densities. Our study was focused mainly on the
finite rank source matrices where analytical solutions proved
tractable. For a non-normal source, the most interesting feature
is the lack of outliers, i.e., extreme values in the averaged
spectral density. However, when imposing the normality
condition on the source matrix S, the outliers are clearly
present in the spectral density. Lastly, we looked at the problem
of finding spectra of an inverse matrix M−1, which, by using
the approach in this paper, proved to be trivially connected to
the spectrum of M .

Among the open problems in the context of our study, the
question remains as to whether the normal versus non-normal
dichotomy has any counterpart relevant for applications.
Secondly, the information on eigenvectors is encoded in
the objects of study, but due to the approach taken, it was

completely omitted in our present work. Thirdly, issues related
to universality seem feasible within our approach and are
certainly worth future investigation.
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APPENDIX A: SUPERSYMMETRIC METHOD

We start off from the joint PDF (2):

P (X)dX = C−1 exp(−μTrX†X)dX. (A1)

As a first step we make the change of variables Y = LXR

implying M = S + Y as well as M = S + Y defined by
Eq. (5). The measure P (X)dX now reads

PL,R(Y )dY = C−1
L,R exp

(−μTrR−2Y †L−2Y
)
dY, (A2)

where the normalization constant is given as CL,R =
(π/μ)N

2
det(LR)2. We open the ratio of determinants with the

help of complex Grassmann variables χi and complex ordinary
variables φi ,

det(Z − M)

det(V − M)
= c

∫
d[φ,χ ]eiq†diag(V −M,Z−M)q, (A3)

with a proper normalization constant c. We introduced the
supervector q = (φ1φ2χ1χ2)T and the joint measure d[φ,χ ] =∏N

i=1 d(φ1)id(φ2)id(χ1)id(χ2)i . Averaging with the distribu-
tion PL,R only affects the exponential terms proportional to Y ,
which are given by

e−iq†diag(Y,Y)q = e−i(φ†
1Yφ2+χ

†
1 Yχ2+φ

†
2Y

†φ1+χ
†
2 Y †χ1)

= e−iTr(E1Y+E2Y
†),

where we set (E1)ij = (φ2)i(φ̄1)j − (χ2)i(χ̄1)j and (E2)ij =
(φ1)i(φ̄2)j − (χ1)i(χ̄2)j . The average is easily found to be∫

dYPL,R(Y )e−iTr(E1Y+E2Y
†) = e

− 1
μ

TrE1L
2E2R

2

. (A4)

To proceed further, we carry out a Hubbard-Stratonovich
transformation

e
− 1

μ
TrE1L

2E2R
2 = c0

∫
[d�]e−μF−q†Qq, (A5)

which reduces the fourth-order supervector terms to second
order. The supermatrix Q appearing in the exponent is given
by

Q =
(Ldiag(σ1N,−σ̄1N ) Ldiag(δ1N,β1N )

Ldiag(δ̄1N,β̄1N ) Ldiag(ρ̄1N,ρ1N )

)
, (A6)

with L = diag(L2,R2). It depends on four new complex
integration variables, two ordinary ones σ and ρ as well as
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two anticommuting ones δ and β. The corresponding measure

d[�] = d2σd2ρd2δd2β (A7)

is flat. We use the notation d2δ = dδdδ̄. The normalization
constant in Eq. (A5) is given by c0 = π−2. The function F =
|σ |2 + |ρ|2 + δ̄β + β̄δ in the exponent yields the Gaussians
needed to bring the supervector q to second order.

Thus, we can cast the generating function RL,R into the
form

RL,R = cc0

∫
d[φ,χ ]

∫
d[�]e−μF+iq†Aq, (A8)

where we introduced the supermatrix

A = diag(V − S,Z − S) + iQ. (A9)

In the next step, we interchange the order of integration
d[φ,χ ] ↔ d[�]. This, however, has a subtle flaw: the resulting
integral is no longer convergent in the ρ and σ directions, an
issue addressed previously [37,38]. It is a problem arising
in the supersymmetric method when the parametrization of
the d[�] manifold does not represent the symmetries of the
d[φ,χ ] manifold. To fix it, we inspect the symmetries of the
latter manifold and the transformations induced on the former
manifold so that the overall ratio stays invariant. This results
in the change of variables

ρ = ρ1 + iρ2, σ = σ1 + iσ2,

ρ1 = i
w − w̄

2
+ f cos φ, ρ2 = −w + w̄

2
+ f sin φ,

σ1 = i
u + ū

2
− ig− sinh γ, σ2 = u − ū

2
+ g− cosh γ.

We apply it before swapping the order of integration. Here, we
introduced real commuting variables f , g, γ , and φ as well as
a small imaginary increment, g− = g − iε, with ε > 0. The
range of integration is f � 0,φ ∈ (0,2π ],g ∈ R,γ ∈ R. The
anticommuting variables δ,β remain unchanged. The integral
then becomes∫

d[�]e−μF+iq†Aq =
∫

d[�′](−ig−f )e−μF ′+iq†A′q,

(A10)

with d[�′] = df dφdgdγ d2δd2β and

F ′ = g2
− + f 2 + |w|2 − |u|2 + g−(ueγ − ūe−γ )

+if (weiφ − w̄e−iφ) + δ̄β + β̄δ. (A11)

We also introduced the transformed supermatrix

A′ =
(

A′
BB A′

BF

A′
FB A′

FF

)
, (A12)

with the 2N × 2N blocks

A′
BB =

(−L2σ−e−s v1N − S

v̄1N − S† −R2σ−es

)
, A′

BF =
(

iδL2 0
0 iβR2

)
,

A′
FF =

(
iL2ρe−iφ z1N − S

z̄1N − S† iR2ρeiφ

)
, A′

FB =
(

iδ̄L2 0
0 iβ̄R2

)
.

After this change of variables, we may now safely interchange
the order of integration and arrive at

RL,R = −ic0

∫
d[�′]g−f e−μF ′

sdet−1A′, (A13)

where the integral over the supervector yielded the superde-
terminant as an extension of Eq. (A3),

c

∫
d[φ,χ ]eiq†A′q = sdet−1A′. (A14)

The superdeterminant is known to satisfy the formula

sdet−xA′ = detx A′
FF

detx A′
BB

(
1 + xTrA0 + x

2
TrA2

0 + x2

2
(TrA0)2

)
,

where A0 = A′
BB

−1A′
BF A′

FF
−1A′

FB for any integer x. This
result enables us to integrate over the Grassmann variables
δ,β in Eq. (A13). The integral

I (f,g,φ,γ ) =
∫

d2δd2βe−μ(δ̄β+β̄δ)sdet−1A′ (A15)

can be written in the form

I = −G[γ1 + (μ − γ2)(μ − γ3) + γ4] (A16)

after some algebra and by utilizing the standard normalization
of the Berezin integrals to one. The individual terms are

G = det(−f 21N − �z�z)

det(g2−1N − �v�v)
,

γ1 = f 2g2
−Tr[PvQz]Tr[P′

vQ′
z],

γ2 = Tr[�z�vPvQz], γ3 = Tr[�v�zQzPv],

γ4 = f 2Tr[�vQ′
z�vPvQzPv] + g2

−Tr[�zP′
v�zQzPvQz],

where we defined

�x = R−2(x̄1N − S†), �x = L−2(x1N − S),

Pv = (g2
−1N − �v�v)−1, P′

v = (g2
−1N − �v�v)−1,

Qz = (−f 21N − �z�z)
−1, Q′

z = (−f 21N − �z�z)
−1.

At this point, we make the remarkable observation that the
function I is independent of the variables γ and φ such that
I (f,g,φ,γ ) = I (f,g). Hence integrating over the fermionic
variables effectively restores a certain invariance. We collect
Eqs. (A13) and (A16) to obtain the generating ratio

RL,R = 4i

π

∫ ∞

−∞
dg

∫ ∞

0
df S(f,g−), (A17)

with the integrand

S(f,g−) = e−μ(g2
−+f 2+|w|2−|u|2)I0(2μf |w|)K0(2iμ|u|g−)

× g−f G[γ1 + (μ − γ2)(μ − γ3) + γ4],

(A18)

where I0,K0 are the Bessel functions of the first and second
kind, respectively. They result from the following integrals
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over the γ,φ variables:∫ ∞

−∞
dγ e−μg−(ueγ −ūe−γ ) = 2K0(2iμ|u|g−),

∫ 2π

0
dφ e−iμf (weiφ−w̄e−iφ ) = 2πI0(2μf |w|),

where we set u = |u|eiθ , w = |w|eiψ , and we choose the
argument of u to be θ = π/2 to make the γ integral convergent.
The angle of w is arbitrary since the φ integral is periodic, and
so we can set ψ = 0.

APPENDIX B: DERIVATION OF (28)

We start from Eq. (27):

j �m(v,u) = 2iμ

π

k∏
i=1

(mi − 1)!

(−μ)mi
eμ|u|2J �m(v,u), (B1)

J �m(v,u) =
∫ ∞

−∞
dg g−e−μg2

−K0(2iμ|u|g−)
k∏

i=1

(
g2

−−αi
vv

)−mi
,

(B2)

where we set d( �m) = k for brevity. Using the Lagrange
interpolation formula, we find

k∏
i=1

(
g2

− − αi
vv

)−mi = lim
γ1,...,γk→1

k∑
l=1

Dl

(
g2

− − γlα
l
vv

)−1
,

with the operator Dl defined as

Dl =
k∏

i=1

(
αi

vv

)1−mi

(mi − 1)!

dmi−1

dγ
mi−1
i

k∏
j=1(�=l)

(
γlα

l
vv − γjα

j
vv

)−1
,

so that the whole integral J �m is expressed as

J �m = lim
γ1,...,γk→1

k∑
l=1

DlCl. (B3)

From now on, we focus on the integral Cl :

Cl =
∫ ∞

−∞
dg

g−e−μg2
−

g2− − αl
vvγl

K0(2μi|u|g−). (B4)

We reintroduce the representation K0(2μi|u|g−) =∫ ∞
0 ds exp (−2μi|u|g− cosh s) and compute

Cl = 1

2
√

γlαl
vv

∫ ∞

0
ds[I+(s) − I−(s)], (B5)

I±(s) =
∫ ∞

−∞
dg

f (g−,s)

g − (±√
γlαl

vv + iε)
, (B6)

with f (x,s) = xe−μx2−2μi|u|x cosh s . The integrals I± are calcu-
lable by the Sokhotski-Plemelj formula:

I±(s) = iπf
( ±

√
γlαl

vv,s
) + PV

∫ ∞

−∞

dxf (x,s)

x − ( ± √
γlαl

vv

) .

(B7)

The second part is the Hilbert transform [39]:

1

π
PV

∫ ∞

−∞
dy

ye−ay2−by

y − x

= 1√
aπ

eb2/4a + ixe−x2a−xberf

(
i

2
√

a
(b + 2ax)

)
. (B8)

Lastly, we need the identity∫ ∞

x

dt e−a2t2−b2/t2

=
√

π

4a
[e2aberfc(ax + b/x) + e−2aberfc(ax − b/x)],

(B9)

valid for x > 0. Combining the formulas of (B7)–(B9) results
in

Cl = 2i
√

πμ|u|e−μαl
vvγl

×
∫ ∞

0
ds

∫ ∞

1
dt cosh se

μαl
vvγl

t2
−μ|u|2t2 cosh2 s

. (B10)

In the next step, we integrate over s and change the variables
t2 = τ + 1:

Cl = iπ

2

∫ ∞

0
dτ

1

τ + 1
e−μ|u|2(τ+1)−μγlα

l
vv

τ
τ+1 . (B11)

We introduce a succinct contour integral representation:

lim
γ1...γk→1

k∑
l=1

Dle
−μγlα

l
vv

τ
τ+1 = 1

2πi

∮
�′

s

dq
e−μq τ

τ+1∏k
i=1

(
q − αi

vv

)mi
,

where the contour �′
s encircles all αi

vv’s counterclockwise. This
formula is a part of Eq. (B3), which, after changing p = −μq,
is equal to

J �m = iπ

2
(−μ)| �m|−1e−μ|u|2

× 1

2πi

∫ ∞

0
dτ

∮
�s

dp
1

τ + 1

e−μ|u|2τ+ pτ

τ+1∏k
i=1

(
p + μαi

vv

)mi
,

(B12)

with appropriately modified contour �s . Lastly, we use an in-
tegral representation of the Tricomi confluent hypergeometric
function:∫ ∞

0
dτ

1

τ + 1
e−μ|u|2τ+ pτ

τ+1 =
∞∑

k=0

Uk+1,1(μ|u|2)pk,

and we combine it with Eqs. (B1) and (B12):

j �m =
∏| �m|

i=1(mi − 1)!

2πi

∮
�s

dp

∞∑
k=0

Uk+1,1(μ|u|2)pk∏| �m|
i=1

(
p + μαi

vv

)mi
,

which is exactly the formula (28).
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APPENDIX C: DETAILS FOR THE CASE OF NON-NORMAL S

The ratio for the non-normal case is given by Eq. (33) with Ri terms:

R0 = 2(V iN−3,1jN,1 + ZiN,−1jN−3,2) + 6(V iN−1,0jN−4,3 + ZiN−4,1jN−1,1) − 4VjN−2,2δ
+
1 − 4ZiN−2,0σ

+
1

+ N2
[
jN−1,1�

Z
N−3,1 + V iN−3,1jN,1

] + μd1[(N − 2)jN−1,1iN−3,1 + 2iN−1,0jN−3,2] − μ2iN−2,1jN−2,1

+ N
[
2VjN−2,2δ

+
1 − 2ZjN−1,1δ2 + 2jN−3,2�

Z
N−1,0 − 2jN−1,1�

Z
N−3,1 − ZiN−4,1jN−1,1 − 3V iN−3,1jN,1

]
,

R1 = −N
[
δ−

1 �V
N−2,2 + �Z

N−2,0σ
−
1

] + μ
[
2�Z

N−1,0�
V
N−3,2 + d2iN−2,0jN−2,2

] + iN−1,0(2VjN−1,2 + 3jN−4,3)

+ d1
[
2NjN−2,2�

Z
N−2,0 + iN−2,0(4VjN−3,3 − NjN−2,2) + iN−2,0jN−4,3 − iN,−1jN−2,2 + V (N − 2)iN−2,0jN−1,2

− Z(N + 2)iN−3,0jN−2,2
] + 2VjN−4,3δ3 − ZiN,−1σ2 − 2iN−3,1�

V
N−2,2 − 2jN−1,1�

Z
N−2,0 − 2ZjN−3,2�

Z
N−1,−1

+ 2V iN−1,0�
V
N−3,3 + jN−3,2(2ZiN−3,0 + iN,−1) − (V iN−2,0 − ZiN,−1)jN−4,3,

R2 = d1
[
�Z

N−1,−1jN−2,2 + (iN−2,0 − 2iN,−1)�V
N−3,3

] + 2(N − 2)�Z
N−2,0�

V
N−2,2 + V iN−2,0�

−V
N−3,3

− 2(Z + V )jN−4,3�
Z
N−1,−1 − �−Z

N−3,2�
Z
N−1,−1 − iN−1,0�

V
N−3,3 + jN−2,2iN−2,0 − δ3σ2,

R3 = −δ3�
V
N−3,3 + �Z

N−1,−1

[
σ2 + 2d1�

V
N−3,3

]
,

R4 = �Z
N−1,−1�

V
N−3,3,

where V = |v|2, Z = |z|2, d1 = z̄v + zv̄, d2 = (z̄v)2 + (zv̄)2, and the notation reads

δ±
1 = iN−1,0 ± iN−3,1, δ2 = iN−4,1 − iN−2,0,

δ3 = iN,−1 − iN−2,0,

σ±
1 = jN−3,2 ± jN−1,1, σ2 = jN−2,2 − jN−4,3,

�z
x,y = ix,y + zix−1,y , �z

x,y = jx,y + zjx+1,y .

Now we turn to the calculation of the modified bosonic block ĩk,−1 of (38). We start from the definition (34):

ik,−1 = (−1)k

μk−1
e−μ|w|2

∫ ∞

0
dρ e−ρI0(2

√
μρ|w|) (ρ + μ|z|2)k

(ρ + μk+
z )(ρ + μk−

z )
.

First, we express the denominator as an integral:

1

(ρ + μk+
z )(ρ + μk−

z )
= 1

2μδk

∫ ∞

0
dp e−pρ−pμk0 sinh(pμδk),

with k±
z = k0 ± δk. We consider the integral

I(p) =
∫ ∞

0
dρ e−(1+p)ρ(ρ + μ|z|2)kI0(2

√
μρ|w|) = e

μ|w|2
p+1

(μ|z|2)kk!

p + 1

k∑
l=0

[μ|z|2(p + 1)]−l

(k − l)!
Ll

(
−μ|w|2

p + 1

)
,

and we obtain the formula for ik,−1:

ik,−1 = (−1)k

2μkδk
e−μ|w|2

∫ ∞

0
dp e−pμk0 sinh(pμδk)I(p).

It gets simplified in the w → 0 limit:

ĩk,−1 = (−1)kk!

2μkδk

k∑
l=0

(μ|z|2)l

l!
[U1,1+l−k(μk−

z ) − U1,1+l−k(μk+
z )],

thus reproducing Eq. (38).
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