
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 128.252.67.66

This content was downloaded on 25/02/2016 at 05:46

Please note that terms and conditions apply.

Diffusion method in random matrix theory

View the table of contents for this issue, or go to the journal homepage for more

2016 J. Phys. A: Math. Theor. 49 015201

(http://iopscience.iop.org/1751-8121/49/1/015201)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/49/1
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Diffusion method in random matrix theory

Jacek Grela

M. Smoluchowski Institute of Physics and Mark Kac Complex Systems Research
Centre, Jagiellonian University, PL-30348 Kraków, Poland

E-mail: jacekgrela@gmail.com

Received 23 June 2015, revised 19 October 2015
Accepted for publication 28 October 2015
Published 24 November 2015

Abstract
We introduce a calculational tool useful in computing ratios and products of
characteristic polynomials averaged over Gaussian measures with an external
source. The method is based on Dyson’s Brownian motion and Grassmann/
complex integration formulas for determinants. The resulting formulas are
exact for finite matrix size N and form integral representations convenient for
large N asymptotics. Quantities obtained by the method are interpreted as
averages over standard matrix models. We provide several explicit and novel
calculations with special emphasis on the 2b = Girko-Ginibre ensembles.

Keywords: random matrix theory, characteristic polynomials, diffusion
equation

1. Introduction

One of the strengths of random matrix theory lies in the abundance of calculational tools, with
the method of orthogonal polynomials [1], supersymmetric techniques [2, 3], and free
probability [4, 5] among many others. This paper attempts to enlarge this family with a
technique we call the diffusion method. It serves as a framework for dealing with the powers
and ratios of characteristic polynomials averaged over Gaussian measures with an external
source. It began as a byproduct of considerations in quantum chromodynamics (hereafter
QCD) made several years ago [6] and was thereafter successfully applied to Hermitian,
Wishart and chiral models [7–9]. The method uses a Dyson-like picture of dynamical matrices
and Grassmann/complex integral representation of determinants.

Studying characteristic polynomials in the random matrix theory (hereafter RMT)
community is now a prolific topic with many branches, but its root can be traced back to a
remarkable formula relating a characteristic polynomial averaged over a 2b = Gaussian
ensemble or Gaussian unitary ensemble (hereafter GUE) to a corresponding orthogonal
polynomial:
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C dHe z H zdet ,N
H

N
1 Tr 2 ( ) ( )ò p- =- -

where H is an N×N Hermitian matrix, C dHeN
HTr 2

ò= - is a normalization constant, and
zN ( )p is a monic Hermite polynomial satisfying the orthogonality relation

dxe x x k 2 .x
n m nm

k2 ( ) ( ) !ò p p d p=- Such objects for 1, 2b = Gaussian ensembles were
considered in [10, 27] and in many areas of application such as zeroes of Riemann ζ function
[12], eigenvalue statistics in quantum chaotic systems [13], and matrix models of QCD [14].
Moreover, products and ratios of characteristic polynomials reveal rich mathematical
structures in both Gaussian orthogonal, and unitary and symplectic ensembles (corresponding
to 1, 2, 4b = and hereafter abbreviated by GOE, GUE, GSE) [15–17] and 1, 2b = Girko-
Ginibre ensembles (abbreviated as GGEb) [18–21, 37].

At the core of the method lies a seminal work of Dyson [22] who observed that a static
matrix model of GOE, GUE, or GSE can also be interpreted as a dynamical system. He
showed that the joint probability density function for N eigenvalues behaves exactly like a
statistical system of N ‘particles’ interacting via the logarithmic potential. The system thus
undergoes a Dysonian Brownian motion defined by the Langevin equation of the form:

d dt W dt
1

,i
j i i j

i
( )
ål

l l
=

-
+

¹

where Wi(t) is a delta-correlated, zero-mean Gaussian stochastic process
W t W t t t .i j ij( ) ( ) ( )d d¢ = - ¢ This Brownian motion of eigenvalues il is induced by a
Gaussian diffusion applied independently to all matrix entries. In this paper, this type of
dynamics is called entrywise diffusion. Studying RMT from the Brownian motion’s point of
view has attracted attention of physicists [23, 24] and mathematicians [25, 26] alike.

The method is as discussed follows—we introduce entrywise dynamics to a matrixM and
consider an averaged quantity of choice (i.e., the product or ratio of characteristic determi-
nants but possibly others may apply) dependent on both M and parameter .0L Then, upon
proper deformation ,0L  L we find a dual- diffusion equation of this quantity in the Λ-
space, which is in turn solved easily. In the end, we perform the undeformed limit.

A phenomenon where the dynamics on M induces dual dynamics in some other para-
meters is generally known as duality and can be found when statistical quantities are char-
acterized by two kinds of variables—random M over which the average is taken and fixed
parameters 0L (i.e., the argument z in the characteristic polynomial z Mdet( )- ). It is also a
general feature of RMT models that these two groups are dual or interchangeable (i.e.,
averages over M with fixed 0L can be related to averages over 0L with fixed M [30, 38]).

The main advantage of this approach lies in the fact that the dual equation has con-
siderably lower dimension and is solved readily by heat kernel techniques. It is also readily
generalized to multi-matrix models (see section 3.4) and has a built-in external source matrix
models.

This paper is organized as follows. In section 2 we discuss the method’s framework—
constructing the dual diffusion equation and the deformation parameters. We comment on the
properties and limitations of the method and establish a relation to standard random matrix
models. In section 3 we calculate five examples with special attention given to GGE .2b= We
show how to arrive at the known formula for the ratio of characteristic polynomials averaged
over GUE with an external source and derive a novel duality-type equation for averaged
products of characteristic polynomials in the GGE .2b= Furthermore, we compute a new
integral representation of the averaged characteristic polynomial in GGE 2b= with variance
structure, compute the same object for a multiplication of two GGE 2b= matrices, and study a
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GGE 1b= GGE 2b= crossover model. The examples obtained provided in the last section are
mostly novel results.

2. Diffusion method

We introduce an entrywise diffusive dynamics to M—an N×N matrix of interest. Well-
suited formalism for our purpose is the multidimensional heat equation:

P M
N

P M,
1

, , 1M( ) ( ) ( )t t¶ = Dt

where P M,( )t is the joint probability density function, MD denotes the Laplace operator over
independent degrees of freedom of M, and the constant N1 is a convention. For
concreteness, we list Laplace operators realizing the canonical triad of GOE, GUE, and GSE:
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where the symmetries arise from the Hermiticity condition M M .†= The family of
GGE 1,2,4b= read:
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All the instances of MD are Gaussian, since in this work we do not consider non-Gaussian
ensembles.

The objects of interest are the ratios and products of characteristic polynomials denoted
as D Z M, .( ) For example, we study in section 3.1 an object D Z M, z M

w M

det

det
( ) ( )

( )
= -

-
with

Z z w, .{ }= We are interested in formulas for the average
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D Z D Z M C dMP M D Z M, , , , 8
M

1( )( ) ≔ ( ) ( ) ( )ò t=t t
-

t

where Mt is a normalized averaging over the dynamical matrices Mτ and C is the
normalization constant. The second equality is a consequence of the definition of the
normalized joint probability density function P M M M, .M( ) ( )t d= -t t

To proceed, we extend D Z M D Z M, , ;( ) ( ) L by introducing parameter-like variables
Λ such that D Z M D Z Mlim , ; ,0 ( ) ( )L =LL with 00L = in most cases. Even though the
parameters Z are kept distinct from Λ, this division is purely conventional. At this point the
deformation is defined in an abstract way but an algorithm for constructing Λʼs is discussed in
section 2.1. However, the purpose of this extension is clear—we search for a dual diffusive
equation for the averaged deformed quantity D Z D Z M; , ; M( ) ( )L = Lt t t in the Λ-para-
meter space.

In order to find it, we consider a time derivative of D :t

D
N

dM P M D Z M
N

dMP M D Z M
1

, , ;
1

, , ; , 9M M( ) ( ) ( ) ( ) ( )ò òt t¶ = D L = D Lt t

where we use equation (1) and integrated by parts to move the differential operator to D. Note
that for Gaussian MD (i.e., containing only second derivatives) integration by parts is tractable
and does not produce any boundary terms for well-behaving functions P and D. The
remaining task is to find DL such that the condition

D Z M D Z M, ; , ; 10M ( ) ( ) ( )DD L = LL

is satisfied. We then write the dual diffusive equation as

D Z
N

D Z;
1

; . 11( ) ( ) ( )D¶ L = Lt t tL

As can be seen from condition (10), the Gaussian Laplace operators acting on the M manifold
are transformed into Gaussian Laplace operators on the Λ space but, at the same time, we
observe a decrease in the number of variables. This fact enables us to solve an initial value
problem with a heat kernel Kτ:

D Z K D Z; , ; , 120( ) ( )( ) ◦ ( )L = L L¢ L¢t t t=

where ‘◦’ denotes a convolution operator and Kτ is defined by K 0,
N

1( )D¶ - =t tL

Klim , .0 ( ) ( )dL L¢ = L - L¢t t As a last step, the undeformed average is

D Z K D Zlim , ; . 130
0

( ) ( )( ) ◦ ( )= L L¢ L¢t t t
LL

=

Concrete forms of Kτ are known once we specify the problem at hand.

2.1. Constructing Λ deformations

Until now we have described how to arrive at the diffusion equation (11) in the Λ-space. Now
we turn to a procedure for finding a particular deformation Λ.

We start by opening the undeformed object D Z M,( ) with the use of the Grassmann/
complex representation of determinants:

M d d M
M

d Mdet exp ,
1

det
exp , 14

i j

N

i ij j
i j

N

i ij j
, 1 , 1

¯ ¯ ¯ ( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ò òå åh h h h a a a~ ~

= =

where the proportionality constants are not essential in what follows. The variables ih and ia
denote, respectively, Grassmann and complex sets of variables. Now suppose the undeformed
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object D consists of k characteristic determinants and l inverse characteristic determinants; it
is thus expressed as

D Z M d e, , , 15T Z M, ; ,G( ) [ ] ( )( )ò h a~ h a

where TG consists of k Grassmann and l complex binomials for every determinant and
inverse determinant according to (14). A succinct notation for the measure
reads d d d d d d d, ... ... .k k l1 1 1[ ] ¯ ¯( ) ( ) ( ) ( ) ( ) ( )h a h h h h a a=

With the help of (15), the action of the Laplacian MD on D Z M,( ) is straightforward—it
produces a certain polynomial U in both Grassmann and complex variables:

D Z M d U e, , , . 16M
T Z M, ; ,G( ) [ ] ( ) ( )( )ò h a h aD ~ h a

We assume that possible deformations Λ should not mix with the matrix M in the exponent
TG. Such an assumption is not restrictive since the structure of U already hints at particular
types of deformations. However, now we observe that the action of MD on a deformed
D Z M, ;( )L should produce the same polynomial U albeit with a different exponent
T T T :G G Gd¢ = +

D Z M d U e, ; , , , 17M
T Z M, ; ; ,G( ) [ ] ( ) ( )( )ò h a h aD L ~ ¢ h aL

where TGd is the unknown deformation part. To proceed, we now closely examine the
structure of the polynomial U, which consists of terms with a general fourth-order structure:

a v w a v w b v w b v w c v w c v w, , , , , , , , 18nm n m nm n m nm n m
[ ] [ ] [ ] ( )⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦¢ ¢ ¢ ¢ ¢ ¢

¢ ¢ ¢ ¢ ¢ ¢

where a v w v w b v w v w, , , ,nm i

N
i

n
i

m
nm i

N
i

n
i

m
1 1

[ ] ¯ ¯ [ ]( ) ( ) ( ) ( )å å= =
= =

and c v w v w, nm i

N
i

n
i

m
1

[ ] ¯( ) ( )å= =
with variables v w, denoting either Grassmann η or complex α variables. The upper indices
range over n m k l, 1 ... ,( )= and the choice of v w, is only restricted so that the whole term has
even Grassmann variables (i.e., is of bosonic nature). The unknown deformation is therefore
given by

T a v w b v w c v w, , , , 19G
v w m n

a
mn mn

b
mn mn

c
mn mn

, , ,
( )( )( ) ( )[ ] [ ] [ ] ( )

{ }
å åd l l l= + +

h a=

where the λ parameters need to be chosen such that the whole term is of bosonic nature (see
the example in section 3.1 where the deformation parameters are fermionic in nature). This
general form of TGd is evident by observing that second-order differentiation wrt. λʼs produce
the fourth-order terms of type (18). Therefore, along with specifying T ,Gd by such
considerations we also construct the operator .DL The choice of non-zero parameters λ in
turn forms a deformation D that satisfies the condition (10) and so the averaged quantity
satisfies a dual diffusion equation (11).

By considering many examples, we have found that only the terms of c-type are present
in the 2b = cases, whereas in the 1, 4b = a b, -terms also form the polynomial U. To make
this distinction explicit, we recall the definition of an undeformed D, which, after expanding
the determinants, is also expressible as a large Nk Nl Nk Nl( ) ( )+ ´ + superdeterminant of a
diagonal supermatrix:

D w M w M w M z M z M z Msdet diag , , , ; , ,... ,l k1 2 1 2( )⎡⎣ ⎤⎦~ - - ¼ - - - -
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with the Nk×Nk fermionic-fermionic and Nl×Nl bosonic-bosonic blocks. In this
interpretation, off-diagonal terms are expressible by c-type terms but a b, -type terms do
not fit into this structure. This argument shows why we did not address the 2b ¹ cases—they
are feasible but the results are harder to calculate since we lose determinantal structures on the
dual side.

2.2. Relating diffusive dynamics to random matrix models

So far we have discussed a general framework in the diffusive language. Here we comment
on how to connect this approach to static random matrix models usually considered in
the RMT context. An entrywise diffusion (1) is, as a multidimensional heat equation, rein-
forced with an initial condition of a delta function type P M M M, 0 .i

0( ) ( ) ( )t d = -b We
thus solve it for the joint probability density function P with the Laplace operators given by
(2)–(4):

P M C
N

M M, exp
4

Tr , 20I I 1
0

2( ) ( ) ( )( ) ( )⎜ ⎟⎛
⎝

⎞
⎠t

b
t

= - -
b b

-

where GOE ( 1b = ), GUE ( 2b = ), and GSE ( 4b = ) arise, respectively, and CI( )b is the
normalization constant. Likewise, plugging in the operators (5)–(7) of GGE 1,2,4b= forms the
following joint probability density functions:

P M C
N

M M M M, exp Tr , 21II II
1

0 0( ) ( ) ( )( ) ( ( )†⎜ ⎟
⎞
⎠⎟

⎛
⎝

⎞
⎠t

t
= - - -

b
b

-

where X XT†  for 1b = and X ZX ZT T†  for 4,b = where Z 0 1
1 0i

N
1

⎜ ⎟
⎛
⎝

⎞
⎠= Å

-= and

CII( )b is the proportionality constant. Such random matrix models dependent on a fixed matrix
M0 are called models with an external source or shifted mean models [27]. Equivalently, the
matrix at time τ is equal to

M M ,0 t= +t

where is a matrix chosen randomly from the respective joint probability density function
P , 1; 0i

0( ) ( ) t = =b at vanishing M0 and fixed time 1.t = We thus conclude that
averaging over dynamical matricesMτ is equivalent to matrix models of variance proportional
to τ with an external source M0 applied.

2.3. General properties and resume

The method is applicable to general Gaussian entrywise diffusion (1) with examples
given in equations (2)–(7). In addition to these canonical instances, in the example of
section 3.3 we enlarge this family to include Gaussian diffusion with variance structure.
A dual diffusion equation (11) in the parameter space has in general lower dimension-
ality when compared to the matrix size and is solved readily by heat kernel techniques.
Because of the underlying diffusion process, the method has a built-in initial matrix M0

translated into an external source considered in the standard random matrix models. The
final formulas also can be viewed as integral representations convenient for large N
analysis.
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A general way to proceed follows these subsequent steps:

1. Introduce an entrywise diffusion of choice (1) (see the examples of (2)–(7))
2. Define object of interest D (i.e., product and ratios of determinants) and form a Λ

parameter extension D according to section 2.1
3. Infer a diffusion equation in the Λ space for the averaged quantity D with the

condition (10)
4. Solve the equation (11) using the heat kernel technique and set Λ parameters to its

undeformed values 0L to recover the object of interest

3. Examples

This section is devoted to several examples and serves as a tour-de-force showing the fra-
mework at work to calculate new results and compare to known ones. The majority of them
deal with 2b = Girko-Ginibre ensembles.

Example 1 is devoted to probably the most thoroughly studied Gaussian unitary
ensemble. We show the applicability of our method to the averaged ratio of determinants,
obtain an integral representation for any external source M0, and show how it reduces to
known results [16] for M 0.0 

Example 2 elucidates on a certain duality-type formula for 2b = Girko-Ginibre
Ensemble, a result that continues the successful program of dualities obtained in both GUE
[28, 30] and GGE [18].

Example 3 is a calculation of a 2b = Girko-Ginibre ensemble with variance structure, a
model considered in [31] and inspired by the doubly-correlated Wishart ensemble [32, 33].
We compute an integral representation and compare it to known results in the vanishing
external source limit.

Example 4 serves as a proof-of-concept in applying the method to the multiplication of
independent matrices drawn from the 2b = Girko-Ginibre ensemble, which has attracted a
lot of attention recently [34, 39, 40]. We calculate an integral representation for the averaged
characteristic polynomial.

Our last example is a toy model used to study the crossover between 1b = and a 2b =
Girko-Ginibre ensemble inspired by elliptic ensemble [41] modeling in a similar way as the
GUE-GGE 2b= transition. We arrive at the large N formula of the real-axis bump developed as
we vary the crossover parameter.

3.1. Ratio of determinants for β ¼ 2 Gaussian ensemble

In this example we calculate explicit formulas for the averaged ratio of determinants by the
diffusion method for the GUE. For the Laplace operator of (3), an entrywise diffusion
equation reads:

P M
N

P M,
1

2

1

2
, ,

k

N

x
i j

N

x y
1

2

, 1

2 2
kk

i j

ij ij( )( ) ( )

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟å åt t¶ = ¶ + ¶ + ¶t

= =
>

where M x iykl kl kl= + and x x y y, .kl lk kl lk= = - We consider the ratio of characteristic
polynomials:
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which is re-expressed using (14) as
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We construct the deformation Λ following the steps given in section 2.1. First, the quantity
D z w M, ,M ( )D is calculated and the polynomial U of (16) is identified as
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The goal is to find a deformation parameter Λ and the corresponding Laplace operator
reproducing this polynomial. As a first step, we calculate two derivatives wrt. parameters z
and w:

D d e
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which already forms first three terms of U. To obtain the remaining ones we identify two a-
type quantities a , ,

i

N
i i1

[ ] ¯åh a h a= = a ,
i

N
i i1

[ ] ¯åa h a h¢ = =
and thus establish two

deformation parameters p and q forming T :Gd

T p q ,G
i

N

i i i i
1

( ¯ ¯ )åd h a a h= - +
=

where the structure of (19) is evident and the chosen signs are a convention. The undeformed
values of p q, are 0. Both are Grassmann numbers so that the TGd is bosonic in nature. The
deformed ratio D z w M, , ;( )L is
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where T T TG G Gd¢ = + and the terms proportional to p and q form off-diagonal parts of the
supermatrix. We calculate that

D d e,p q
i j

N

i i j j
i j

N

i i j j
i

N

i i i i
T

, 1 , 1 1
i j i j

G[ ] ¯ ¯ ¯ ¯ ¯ ¯

⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟ò å å åh a a h h a h a a h h h a a¶ ¶ ~ - - - ¢

= = =
< <

reproduces the remaining part of U and thus forms, together with (23), the Laplace operator in
the parameter space:

1

2
2 .ww zz p q( )D = ¶ - ¶ - ¶ ¶L

The dual diffusion-like equation (11) is equal:

D z w p q
N

D z w p q, ; ,
1

2
2 , ; , . 24ww zz p q( )( ) ( ) ( )¶ = ¶ - ¶ - ¶ ¶t t t

We comment on two features of (24)—in the z direction it has a negative diffusivity constant
and the diffusion also occurs in the p q, Grassmann ‘directions.’ In the RMT context the
negative diffusive constant is interpreted as a source of a universal oscillatory behavior [9].
To deal with it on a technical level we can either Wick rotate the z iz variable or consider
instead a modified object ,iz M

w M

det

det

( )
( )

-
-

and we choose the former approach since it is more
intuitive. In considering Grassmann ‘diffusion’ we make use of the well-known property of
superdeterminants:

a b
c d

d ca b

a
sdet

det

det

1( ) ( )
( )

=
- -

and utilize the ‘flatness’ property q p0, 02 2= = to expand
D z w H p q D pD qD qpD, , ; , 1 2 3 4( ) ( ) ( ) ( ) ( )= + + + in the Grassmann parameters. We
rewrite (24) as an equivalent system of four equations for each D :i( )

D
N

D
N

D
1

2

1
, 25ww zz

1 1 4( ) ( )( ) ( ) ( )¶ = ¶ - ¶ -t t t t

D
N

D
1

2
, 26ww zz

2 2( ) ( )( ) ( )¶ = ¶ - ¶t t t

D
N

D
1

2
, 27ww zz

3 3( ) ( )( ) ( )¶ = ¶ - ¶t t t

D
N

D
1

2
. 28ww zz

4 4( ) ( )( ) ( )¶ = ¶ - ¶t t t

To find the solution of (24) we observe that only equations (25) and (28) contain relevant
components i=1, 4 since ultimately we are interested in the undeformed limit

D Dlim .p q, 0
1( )= To solve them we form a heat kernel of the Laplace operator

:
N ww zz
1

2
( )¶ - ¶
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K z w y v
N N

v w
N

y iz, ; ,
2

exp
2 2

, 292 2( ) ( ) ( ) ( )⎜ ⎟⎛
⎝

⎞
⎠pt t t

= - - - -t

where the z direction is Wick rotated, and we thus form the z dependent part of the solution to
(25) and (28) by analytic continuation. The solution to (28) is

D z w dydvK z w y v D iy v M K D z w, , ; , , ; , ,4
0

4
0 0

4( )( )( ) ( ) ≕ ◦ ( )( ) ( ) ( )ò= -t t t

with M0 denoting the initial matrix. With this notation, the solution to the inhomogeneous
heat equation (25) is

D z w K D
N

D z w K D z w
N

D z w, , , , .

30

1
0

1
0

4
0

1 4( )( ) ◦ ( ) ◦ ( ) ( )

( )

( ) ( ) ( ) ( ) ( )⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

t t
= - = -t t t t

To write it explicitly, we expand the initial condition:

D
z M

w M
qp

z M w M

D y v M
y M

v M

D y v M
y M

v M y M v M

det

det
1 Tr

1
,

, ;
det

det
,

, ;
det

det
Tr

1
.

0

0 0 0

0
1

0
0

0

0
4

0
0

0 0 0

( )
( ) ( )( )

( ) ( )
( )

( ) ( )
( ) ( )( )

( )

( )

⎛
⎝⎜

⎞
⎠⎟=

-

-
+

- -

=
-

-

=
-

- - -

Due to the unitary invariance, the most general initial matrix is diagonal
M h hdiag , , ,N0 1( )= ¼ where some values of hi can coincide. We also form an N-
dimensional indexing vector h h h, , N1( )= ¼


and introduce two functions:

z
N

due iu h
2

, 31h
u iz

i

N

i
1

N
2

2 ( )( ) ( )( )ò p
pt

= - -- -

=

t

w
N

dqe
q h2

1
. 32h

q w

i

N

i1

N
2

2

( )( ) ( )( )ò q
pt

=
-

- -

=

t

After setting p q, 0, the averaged ratio of characteristic polynomials (30) is equal to

D z w z w
N

z w, , 33h h
i

N

h i h i
1

( ) ( ) ( ) ( ) ( ) ( )( ) ( )åp q
t

p q= -t
=

- +
   

where we introduced an extended N 1+ dimensional vector
h i h h h h h h, , , , , , ,i i i i N1 1 1( ) ( )= ¼ ¼+ - +


and contracted N 1- dimensional vector
h i h h h h, , , , , .i i N1 1 1( ) ( )= ¼ ¼- - +


To connect with known results, we write the average
explicitly using (20) as

D z w C dHe
z M

w M
,

det

det
. 34I M M1 TrN

2 0
2( ) )( ) ( )

( )
( )( )ò=

-
-

t b

- - -t

This quantity is present as a building block of biorthogonal structures [35, 36], where θ and π

are the multiple orthogonal polynomials of type I and II, respectively.
To recover known formulas for the GUE case, we set hi=0 for all i N1 ...= so that

h h i, ( )+
 

and h i( )-


become a N, N 1( )+ and N 1- dimensional null vector, respectively. It is
now more natural to introduce simplified notation: h N h i N, 1( )  --

 
and

h i N 1.( )  ++


Now the type I orthogonal polynomial associated with a k×k matrix is
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given by w f w ,k k k1 1( ) ( )q g= - - where k k

N k N1

2( )!
g =

t pt
and f z sk

e

z s k

N s
2

2

( ) ( )ò p=
-
t

-

is the

Cauchy transform. Along with ,N N 1
1g g =
t- we rewrite (33) as:

D z w z f w f w z, ,N N N N N N1 1 1( ) ( ) ( ) ( ) ( )g p tg p= -t - - -

which is the ratio formula calculated for GUE in [16].

3.2. Duality formula for β ¼ 2 Girko-Ginibre ensemble

Let M x iykl kl kl= + be an N×N matrix. We introduce an entrywise diffusive dynamics with
a Laplacian (6):

P M
N

P M,
1

4
, ,

i j

N

x y
, 1

2 2
ij ij( )( ) ( )åt t¶ = ¶ + ¶t

=

which also describes the GGE .2b= We aim at calculating an averaged product of k
characteristic polynomials:

D M z M z M, det . 35k

i

k

i i
1

( )( )( ) ¯ ( )( ) †
⎡
⎣⎢

⎤
⎦⎥ = - -

=

In this example we skip the procedure of constructing a deformed quantity D ,k( ) which was
described in section 2.1 and presented in the example of section 3.1. Deformation is a kN2
block matrix of the form

D M A
M A

A M
, ; det

1 1 1

1 1 1
, 36k N k N

N N k
( ) ( )( )

†

† †

⎛
⎝⎜

⎞
⎠⎟




=
Ä - Ä - Ä

Ä Ä - Ä

where z zdiag ,... ,k1( ) = 1n is an N-dimensional unit matrix and A is a complex k×k
matrix, representing the Λ-parameter space. We baptize D k( ) the k-extended averaged
characteristic polynomial (k-EACP) in agreement with [20] where the authors considered a
particular case of k=1. In the limit DlimA

k
0

( )
 we recover (35).

To proceed, we open the D k( ) using Grassmann variables:

D M A d e

T z z M

M

A A

, ; , ,

,

k T

G
i

k
i i

i
i

k
i i

i
i

k
i i

i

k
i i

i j

k
i j

ij
i j

k
i j

ij

1 1 1

1

, 1 , 1

G( ) [ ]

¯ · ¯ · ¯ ¯ · ·

¯ · ·

¯ · ¯ ·

( )

( ) ( ) ( ) ( ) ( ) ( )

( ) † ( )

( ) ( ) † ( ) ( )

 ò

å å å

å

å å

h x

h h x x h h

x x

h x x h

~

¢ = + -

-

- +

¢

= = =

=

= =

with kN-dimensional Grassmann vectors j
i( )x and j

i( )h (i k j N1 ... , 1 ...= = ). We also
introduced a dot ‘·’ denoting a sum over N-dimensional indices, a notation useful in this and
forthcoming examples. The underlined part forms the deformation T .Gd We find that

D d e, ,M
k

i j

k
i j i j T

, 1

G[ ] · ¯ ¯ ·( ) ( ) ( ) ( ) ( )
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ò åh x h x h xD ~ ¢

=
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which determines the parameter Laplace operator as

1

4
Tr ,

i j

k

a b AA
, 1

2 2
ij ij( ) ≕ †åD = ¶ + ¶ ¶L

=

where A a ib .kl kl kl= + We thus arrive at the final equation for the average
D D A; :k

M
k ( )( ) ( ) = tt

D A
N

D A;
1

Tr ; , 37k
AA

k( ) ( ) ( )( ) ( )
† ¶ = ¶t t t

where we observe a dimensional reduction in diffusive variables N N k k.´  ´ Using (21)

and the proportionality constant C ,II N k
2

1
2( )( ) =

pt
- the solution is

D A
N

dBe D M B; , ; ,k
k

B A B A kTr
0

N

2

( )( )( )( ) ( ) ( )† †⎜ ⎟⎛
⎝

⎞
⎠ òpt

=t
- - -t

where A and M0 are the initial values of the parameters- and the randomized matrix,
respectively. We turn to the product of characteristic polynomials by taking the undeformed
limit A 0:

D
N

dBe D M B, ; . 38k
k

BB kTr
0

N

2

( )( ) ( )( ) ( )†⎜ ⎟⎛
⎝

⎞
⎠ òpt

=t
- t

To arrive at the duality formula, we write the definition of an average D k( )
t using (21):

D
N

dMe D M, , 39k
N

M M M M kTrN

2

0 0( ) ( ) ( )( ) ( )( ) ( )†⎜ ⎟⎛
⎝

⎞
⎠ òpt

=t
- - -t

but this time C
N

.II
N

2
1

2

( ) ⎜ ⎟
⎛
⎝

⎞
⎠pt

=- We can thus write the duality from (38) and (39):

N
dMe D M M A

N
dBe D M B, ; 0 , ; ,

40

N
MM k

k
BB kTr

0
Tr

0
N N

2 2

( ) ( )
( )

( ) ( )† †⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ ò ò

pt pt
+ = =- -t t

with the definition repeated for clarity:

D M A
M A

A M
, ; det

1 1 1

1 1 1
.k N k N

N N k
( )( )

†

† †

⎛
⎝⎜

⎞
⎠⎟




=
Ä - Ä - Ä

Ä Ä - Ä

This new result is an extension of a similar formula for M 00 = obtained in [18]. Such dual
quantities were studied extensively in 2b = Gaussian ensembles by [28], for general β in
[30], and in the context of string theory by [29] among others.

3.3. β ¼ 2 Girko-Ginibre ensemble with variance structure

In another example we deal with a GGE 2b= matrix model with variance structure. With
M x iykl kl kl
˜ ˜ ˜= + we define it as

P M
N

P M,
1

4
, ,

i j

N

ii jj x y
, 1

2 2 2 2
ij ij( )( ) ( )˜ ˜ ˜ ˜˜ ˜åt t¶ = G W ¶ + ¶t

=

- -

where the variance structure is assumed to be strictly positive , 0.ii jjG W > The fundamental
solution is
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P M C
N

M M M M, exp Tr ,1 2
0

2
0( )( ) ( )˜ ˜ ˜ ˜ ˜ ˜ ˜† †⎜ ⎟⎛

⎝
⎞
⎠t

t
= - G - W --

where M0˜ denotes an initial matrix and C 1˜- is a normalization constant. For M 00˜ = this
measure is called a doubly-correlated 2b = Wishart ensemble with both time (Γ) and space
(Ω) correlations [33]. However, here we treat it as a Girko-Ginibre model (i.e., the
eigenvalues of M̃ are investigated instead of the eigenvalues of M M˜ ˜† ). A natural object of
interest is a characteristic determinant:

D z M z M z M, det det . 41( )( ) ( )˜ ˜ ˜ ¯ ˜ ( )†= - -

It is convenient to consider a reparametrization M M ,˜= G W where the new matrix
M x iykl kl kl= + undergoes an usual entrywise diffusion equation (6):

P M
N

P M,
1

4
, .

i j

N

x y
, 1

2 2
ij ij( )( ) ( )åt t¶ = ¶ + ¶t

=

and the quantity of interest D̃ is modified to

D z M D z M z M z M, , det det , 421 1 , 1 1 1 1( ) ( ) ( )˜ ( ) ¯ ( )( ) †G W = = - G W - W G- - G W - - - -

which we open using (14):

D d e

T z z X M

, ,

.

T

G

,

1 1 1 1

G

( )
[ ]

¯ · ¯ · ¯ ¯ · · ¯ · ·

( )

†

ò h x

h h x x h h x x

~

= + - G W - W G

G W

- - - -

According to section 2.1, we look for a deformation by calculating the action of Laplacian
DM

,( )D G W to obtain the polynomial U:

U , 43
i j

N

ii i i jj j j
, 1

2 2¯ ¯ ( )å x h x h= G W
=

- -

which depends on the variances ,W G but the formula retains the structure of equation (18).
Both variance matrices modify the c-type terms slightly:

c v w v w V v w V, , , ,
i

N

i i
i

N

ii i i ii ii ii
1 1

{ }[ ] ¯ ¯å å=  = G W
= =

but we form the TGd out of modified c-type terms as:

T w w ,G
2 2¯ ¯ · · ¯ · ·d h x x h= - G + W- -

with an introduced Λ-parameter w and arbitrary signs. By setting T T T ,G G Gd¢ = + the
deformed determinant D ,( )G W is expressible as a block matrix with off-diagonal elements
encoding the deformation:

D z M w z M w
w z M

, ; det , 44,
1 1 2

2 1 1
( ) ¯

¯
( )( )

†

⎛
⎝⎜

⎞
⎠⎟= - G W - G

W - W G
G W

- - -

- - -

with D Dlim .w 0
, ,( ) ( )=

G W G W In the last step, we find that the action of ww¯¶ acting on D ,( )G W

reproduces the polynomial (43) and thus forms Laplacian in the parameter space:

,ww̄D = ¶L
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and the final equation for the averaged Dt is

D z w
N

D z w;
1

; . 45ww( ) ( ) ( )¯¶ = ¶t t t

Because the resulting dual equation is two-dimensional, we readily form the solution:

D z
N

d ue D z M u, ; , 46u2 ,
0

N 2 ( )( ) ( )∣ ∣ ( )òpt
=t

- G Wt

D z M w z M w
w z M

, ; det ,,
1 1 2

2 1 1
( ) ¯

¯
( )

†

⎛
⎝⎜

⎞
⎠⎟= - G W - G

W - W G
G W

- - -

- - -

where we took the undeformed limit w 0. It is an integral representation valid for general
M0 and correlations , .G W For completeness, the averaged quantity D z( )t is explicitly
expressed with the use of the joint probability density function (21) as

D z C dM
N

M M M M D z Mexp Tr , . 47II
2

1
0 0

,( ) ( )( ) ( ) ( ) ( )† ( )⎜ ⎟⎛
⎝

⎞
⎠ò t

= - - -t
- G W

In the special M 00  limit, the solution (46) reproduces the result of [31]:

D z
N

d e z
2

.
i

N

ii ii
0 1

2 2 2 2N 2 ( )( ) ∣ ∣ò t
rr r= + G Wt

r
¥

-

=

- -t

3.4. Multiplication of two independent β ¼ 2 Girko-Ginibre matrices

In this example we show how the method is applied to a product of two 2b = Girko-
Ginibre matrices, a case that has drawn much attention recently [34, 39, 40]. We intro-
duce two matrices, M M, ,1 2 each undergoing an independent GGE 2b= entrywise diffusion
of (6):

P M M
N

P M M

N
P M M

, ,
1

4
, ,

1

4
, , ,

i j

N

x y

i j

N

x y

1 2
, 1

2 2
1 2

, 1

2 2
1 2

ij ij

ij ij( )
( )( ) ( )

( )

å

å

t t

t

¶ = ¶ + ¶

+ ¶ + ¶¢ ¢

t
=

=

where M x iykl kl kl1( ) = + and M x iy .kl kl kl2( ) = ¢ + ¢ We consider a determinant of the form:

D z M M z M M z M M, , det det . 481 2 1 2 1 2( )( ) ( ) ( )¯ ( )†= - -

To proceed, we linearize it by expanding the block structure accordingly:

D
z M M

z M M
z

z

M

M
M

M

z X

z M

M

M

det
0

0
det 0

0

0

0
0

0

det

0 0

0 0

0 1 0

0 0 1

1 2

1 2

1

2

1

2

1

2

1

2

( )¯ ¯

¯

† †

†

†

†

⎜ ⎟
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜ ⎛

⎝
⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

=
-

-
= -

=
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where we used formulas valid for block matrices:

M M

M M

M

M
M

M

a b
c d

ad bc cd dc

0

0

0

0
0

0
,

det det , if .

1 2

1 2

1

2

1

2

( )
( )

( )

† †

†⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟=

= - =

After this preparatory transformation, we identify deformation parameters as described in
section 2.1. We skip this part due to its similarity to previous examples and just write the
resulting deformed characteristic polynomial:

D z M M u v w

z w M

v z M

M u w

M v u

, , ; , , det

0

0

0

0

, 491 2

1

2

1

2

( )

¯
¯

¯ ¯

( )
†

†

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
=

-

-

where three additional parameters u v w, , were introduced. We open this determinant:

D d d e

T z z

u u w v w v

X X X X

,

,

T

G 1 1 2 2

1 1 2 2 1 2 2 1 1 2 2 1

1 1 2 2 2 1 1 1 2 2 2 1

G

¯ · ¯ · ¯
¯ · ¯ · ¯ ¯ · ¯ ¯ · ¯ · ¯ · ¯
¯ · · ¯ · · ¯ · · ¯ · ·† †

ò x h

x x x x

h h h h x x x x h h h h

x h x h h x h x

~

¢ = +

+ + - + + -

+ + + +

¢

where ,i ix h are Grassmann variables and the underlined part forms T .Gd The joint Laplace
operator acting on D is

D d e, ,M M
T

1 2 2 1 2 1 1 2 G
1 1 ( )( ) [ ] ¯ · · ¯ ¯ · · ¯ò h x x x h h h h x xD + D ~ + ¢

which also dictates the Laplace operator in the parameter space to be of the form

.w w v v, ,¯ ¯D = ¶ + ¶L

The dual diffusion equation for the averaged determinant is

D z u v w
N

D z u v w; , ,
1

; , , , 50w w v v, ,( )( ) ( ) ( )¯ ¯¶ = ¶ + ¶t t t

We write the solution in the undeformed limit v w, 0 and u 1:

D z
N

d wd ve D z M M v w, , ; 1, , . 51w v
2

2 2
1 0 2 0

N 2 2 ( )( ) ( )( )( ) ( )∣ ∣ ∣ ∣⎜ ⎟⎛
⎝

⎞
⎠ òpt

=t
- +t

As before, we investigate the vanishing source limit M 0,i 0( )  where

D z u v w vw z vw, 0, 0; , , 1 .N N2( )( )( ) ¯ ∣ ∣ ¯= + +
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The angles of w v, in (51) can be integrated out with the help of hypergeometric function F :2 1

D z
N

dpdq qpe z q p F

N N z p q

z p q

2

1

2
,

2
, 1,

4
,

q p N
2

0

2 2 2
2 1

2 2 2

2 2 2 2

N 2 2 ( )

( )

( )( ) ∣ ∣

∣ ∣
∣ ∣

⎜ ⎟⎛
⎝

⎞
⎠

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

òt
= +

´
-

-
+

t
¥

- +t

and we simplify it further by introducing p t q, t2 2a= =
a
and integrating over αʼs:

D z
N

dt tK
Nt

z t F
N N z t

z t

2 2 1

2
,

2
, 1,

4
, 52N

2

0
0

2 2
2 1

2 2

2 2 2( ) ( )
( ) ∣ ∣ ∣ ∣

∣ ∣
( )⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠

⎛
⎝

⎞
⎠

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟òt t

= +
-

-
+

t
¥

where K0 is the modified Bessel function of the second kind. The average Dt is explicitly
given as

D z C dM dM
N

M M M M

z M M z M M

exp Tr

det det

II
2

2
1 2 1 1 2 2

1 2 1 2( )
( )

( ) ( )

( ) ( )

¯

† †

†

⎜ ⎟⎛
⎝

⎞
⎠ò t

= - +

´ - -
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according to (21). To the best of our knowledge, this result has not been considered
previously.

3.5. Girko-Ginibre ensemble crossover model between β ¼ 1 and β ¼ 2

The last example is a crossover model between real and complex Girko-Ginibre ensembles. A
matrix drawn from GGE 1b= has either real or complex conjugated pairs of eigenvalues,
whereas GGE 2b= is not constrained by such condition—its eigenvalues spread evenly over
the complex plane. To study this transition, we introduce an entrywise diffusion combining
the Laplace operators of (5) and (6):

P M
N

P M,
1

4
, ,

i j

N

x y
, 1

2 2 2
ij ij( )( ) ( )åt a t¶ = ¶ + ¶t

=

which forms an N×N matrix M x iy .kl kl kl= + The model introduces a crossover parameter
α that varies between 0 ( 1b = ) and 1 2( )b = . We investigate the condensation of
eigenvalues on the real line as we take the limit a 0. We are interested in a standard
characteristic polynomial:

D z M z M z M, det det . 53( )( ) ( ) ¯ ( )†= - -

After finding the deformation analogously to the examples of section 3.2 and 3.3, we form a
deformed quantity:

D z M w
z M w

w z M
, ; , 54( ) ¯

¯
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-

for which, using the same techniques as previously, we find a dual diffusion equation:
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The solution, after taking the w  0 limit, is

D z
N

drre D z M r
2

, ; , 56
r

0
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1 2
2

( )( ) ( )( )òt
=t

¥ -
t a+

which is valid for any external source M0. For vanishing external source M 00  , the
formula (56) agrees with the results for both GGE 1,2b= [19, 20].

We now turn to a microscopic crossover region of z0 and Ima   0, where a pre-
cursor of the real eigenvalues of GGE 1b= is visible. We set a microscopic scaling near the real
axis i Nz 1 4h= - and the crossover parameter near zero aN 1 4a = - , which yield an
asymptotic formula:

D e e
a

erfc
2

2
.a 2

2 2a4 2 2 2 ⎛
⎝⎜

⎞
⎠⎟

h
t

~ -t
- - h

t

It shows an error function type bump near 0h = , which we interpret as the discussed
precursor of an emerging bulk of real eigenvalues.

4. Conclusions

The method presented here is applicable to the Gaussian random matrix models for all
1, 2, 4b = and serves as a tool for obtaining averages of both ratios and products of

characteristic polynomials. Its main goal is to find a dual diffusion equation in the parameter
space when the matrix itself undergoes a similar diffusive motion.

We calculated several examples for 2b = GUE and GGE, where the resulting dual
diffusion equations were particularly simple. We found a novel duality formula for products
of characteristic polynomials, for GGE 2b= , a previously not considered characteristic poly-
nomial for the product of two GGE 2b= matrices and a 1 2b b= = Girko-Ginibre ensemble
crossover model. We also dealt with GGE 2b= with variance structure and re-derived the ratio
of characteristic polynomials in GUE case.

The main advantage of this method is a large reduction in the degrees of freedom. It also
has a built-in external source random matrix models, which is especially suitable when
looking for duality formulas of type (40).
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